in the service producing sector
Answer:
Both are only physical changes
Explanation:
A physical change is a change that does not involve or alter the chemical composition of the substances involved. Physical changes form no new substance and can be easily separated into individual constituents. Example of physical changes are change in state, boiling, melting etc.
According to this question, two processes were given as follows:
1. mixing chocolate syrup into milk
2. rain forming in a cloud
These two processes are similar in the sense that they are both examples of physical changes.
<span>We know that the momentum keeps constant in a inelastic collisions, so the product of mass and speed do not change:
m1 * v1 + m2 * v2 = m * v
1 * 1 + 5 * 0 = (1 + 5) * v
1 = 6 * v
v = 1/6 m/s
So the final speed of the 6 kg chunk will travel at 0.167 m/s</span>
<h3>
Answer: 130 newtons</h3>
===============================================================
Explanation:
We'll need the acceleration first.
- The initial speed (let's call that Vi) is 8.0 m/s
- The final speed (Vf) is 0 m/s since Sam comes to a complete stop at the end.
- This happens over a duration of t = 4.0 seconds
The acceleration is equal to the change in speed over change in time
a = acceleration
a = (change in speed)/(change in time)
a = (Vf - Vi)/(4 seconds)
a = (0 - 8.0)/4
a = -8/4
a = -2
The acceleration is -2 m/s^2, meaning that Sam slows down by 2 m/s every second. Negative accelerations are often associated with slowing down. The term "deceleration" can be used here.
Here's a further break down of Sam's speeds at the four points of interest
- At 0 seconds, he's going 8 m/s
- At the 1 second mark, he's slowing down to 8-2 = 6 m/s
- At the 2 second mark, he's now at 6-2 = 4 m/s
- At the 3 second mark, he's at 4-2 = 2 m/s
- Finally, at the 4 second mark, he's at 2-2 = 0 m/s
Next, we'll apply Newton's Second Law of motion
F = m*a
where,
- F = force applied
- m = mass
- a = acceleration
We just found the acceleration, and the mass is fairly easy as all we need to do is add Sam's mass with the sled's mass to get 60+5.0 = 65 kg
So the force applied must be:
F = m*a
F = 65*(-2)
F = -130 newtons
This force is negative to indicate it's pushing against the sled's momentum to slow Sam down.
The magnitude of this force is |F| = |-130| = 130 newtons