Answer:
1. 4-ethyl-1-heptene
2. 6-ethyl-2-octene
3. 1-butyne
Explanation:
The compounds are named according to IUPAC rules.
Compound 1:
- Identify the longest carbon chain. This chain is called the parent chain.
- Identify all of the substituents (groups appending from the parent chain).
- The parent chain is numbered so that the multiple bonds have the lowest numbers (double has the priority over alkyl substituents).
- The longest chain contains 7 carbon atoms, so taken the name hept.
- The double bond between C1 and C2, so take no. 1 and add the suffix ene to hept "1-heptene".
- The ethyl group is the alkyl substituent on position 4.
- So the name is 4-ethyl-1-heptene.
Compound 2:
- Identify the longest carbon chain. This chain is called the parent chain.
- Identify all of the substituents (groups appending from the parent chain).
- The parent chain is numbered so that the multiple bonds have the lowest numbers (double has the priority over alkyl substituents).
- The longest chain contains 8 carbon atoms, so taken the name oct.
- The double bond between C2 and C3, so take no. 2 and add the suffix ene to oct "2-octene".
- The ethyl group is the alkyl substituent on position 6.
- So the name is 6-ethyl-2-octene.
Compound 3:
- Identify the longest carbon chain. This chain is called the parent chain.
- Identify all of the substituents (groups appending from the parent chain), there is no substituents.
- The parent chain is numbered so that the multiple bonds have the lowest numbers (Triple bond here take the lowest number).
- The longest chain contains 4 carbon atoms, so taken the name but.
- The triple bond between C1 and C2, so take no. 1 and add the suffix yne to but "1-butyne".
Answer:
11.31 g.
Explanation:
Molarity is defined as the no. of moles of a solute per 1.0 L of the solution.
M = (no. of moles of solute)/(V of the solution (L)).
<em>∴ M = (mass/molar mass)of NaCl/(V of the solution (L)).</em>
<em></em>
<em>∴ mass of NaCl remained after evaporation of water = (M)(V of the solution (L))(molar mass)</em> = (0.45 M)(0.43 L)(58.44 g/mol) = <em>11.31 g.</em>
Answer:

Explanation:
Hello,
In this case, the described chemical reaction is:

Thus, for the given reacting masses, we must identify the limiting reactant for us to determine the maximum mass of water that could be produced, therefore, we proceed to compute the available moles of ethane:

Next, we compute the moles of ethane consumed by 13.0 grams of oxygen by using the 1:7/2 molar ratio between them:

Thus, we notice there are less available moles of ethane, for that reason, it is the limiting reactant, thereby, the maximum amount of water is computed by considering the 1:3 molar ratio between ethane and water:

Best regards.
Hydrocarbons are carbon and hydrogen. Methane is CH4, and propane is C3H8. Methene is CH3, and propene is C3H6. Carbohydrates are hydrates of carbon. They <span>have the general formula (CH2O)x. thats how it differs
</span>