The speed at which seismic waves travel depends on the properties of the material that they are passing through. For example, the denser a material is, the faster a seismic wave travels. P waves can travel through liquid and solids and gases, while S waves only travel through solids.
11.0 kg = (11.0 kg)(1000 g/kg) = 11000 g
(11000 g)/(1400 cm3) = 7.857 g/cm3
Simplified = 7.86 g/cm3
When you add salt to water, you lower to freezing point of the substance.
So for example, normal water freezes at 0°C. But water with salt in it won't freeze at 0°C, because its freezing point is lowered.
In answer to the question. It takes longer for water with salt in it to freeze because the substance requires a lower temperature than normal water to freeze.
Answer:
Endothermic.
Explanation:
Hello there!
In this case, it is necessary to keep in mind that exothermic processes are characterized by the release of energy and the endothermic processes by the absorption of heat. In such a way, every process from solid to liquid or gas is endothermic as they require energy to separate the molecules and therefore turn out in the phase change. On the other hand, every process from gas to liquid or solid is exothermic as heat is released to rejoin the molecules and produce the phase change.
Therefore, since solid water molecules tend to be well-arranged, it is necessary to add heat to the system to produce the phase change until gas; in such a way, this process is endothermic as energy must be absorbed by the ice.
Best regards!
Answer:
The bond order for C2 molecule is 2.
Explanation:
Bond order can be defined as the half of the difference between the number of electrons in the bonding orbital and the number of electrons in the antibonding orbitals. It can be represented mathematically by; .
Bond order,n= [number of electrons in the bonding molecular orbitals(BMO) - the number or electrons in the anti-bonding molecular orbitals(AMO) ] / 2.
The electronic configuration of the C2 molecule is given below;
C2 = (1sσ)^2 (1s^*σ)^2 (2sσ)^2 (2s^*σ)^2 (2pπ)^4.
The ones with the (*) are known as the Anti-bonding molecular orbitals while the ones without (*) are known as the bonding molecular orbitals. Hence, we have 8 Electrons from the bonding molecular orbitals and 4 Electrons from the anti-bonding molecular orbitals.
So, from the formula given above, the bond order of C2 molecule is;
===> 8-4/2= 4/2.
===> 2.