Here are the solutions:
For NaCl, there would be one electron transferred from the sodium atom, now producing a cation to the chlorine atom resulting in a chlorine anion. Forming ionic bond.
For CaS, there would be 2 electrons transferred from an atom of Ca to S, this can be obtained by simply looking at the ionic charges and or combining capacities of Ca.
For BaO, likewise, 2 electrons that are valence electrons are transferred from Ba to Oxygen.
In the ionic compound of KBr, the atom of K, potassium donated its one valence electron to Br, in need of it to achieve a stable octet, and produce the chemical bond.
Finally, LiF, a single valence electron is transferred from a metal atom of Li to F, for both of the atoms that would form the ionic bond to achieve a stable octet, and or full electron shell.
This is pretty easy lol.... AS and AR
D, you can't see ultraviolet rays and other similar frequency waves with the naked eye.
Answer:
Explanation:
Chemically, we can have a reaction between chlorine gas and solid sodium
This reaction is actually explosive and would produce fine powder of sodium chloride
We have the reaction as follows:

Essentally, what we can deduce from here is that we do not need to add water to the flask. Except for the reason that we would want the sodium chloride solid in the solution form, there is absolutely no reason to add water to the flask as the reaction would proceed normally
Answer:
I didn't understand questions properly. Sorry