Answer:
temperature
Explanation:
Celsius is a unit of temperature. Another example of this would be Kelvin or Fahrenheit.
<u>Answer:</u> The equilibrium concentration of bromine gas is 0.00135 M
<u>Explanation:</u>
We are given:
Initial concentration of chlorine gas = 0.0300 M
Initial concentration of bromine monochlorine = 0.0200 M
For the given chemical equation:

<u>Initial:</u> 0.02 0.03
<u>At eqllm:</u> 0.02-2x x 0.03+x
The expression of
for above equation follows:
![K_c=\frac{[Br_2]\times [Cl_2]}{[BrCl]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBr_2%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BBrCl%5D%5E2%7D)
We are given:

Putting values in above equation, we get:

Neglecting the value of x = -0.96 because, concentration cannot be negative
So, equilibrium concentration of bromine gas = x = 0.00135 M
Hence, the equilibrium concentration of bromine gas is 0.00135 M
Answer:
B = (2.953 × 10⁻⁹⁵) N.m⁹
Explanation:
At equilibrium, where the distance between the two ions (ro) is the sum of their ionic radii, the force between the two ions is zero.
That is,
Fa + Fr = 0
Fa = - Fr
Fa = (|q₁q₂|)/(4πε₀r²)
Fr = -B/(r^n) but n = 9
Fr = -B/r⁹
(|q₁q₂|)/(4πε₀r²) = (B/r⁹)
|q₁| = |q₂| = (1.6 × 10⁻¹⁹) C
(1/4πε₀) = k = (8.99 × 10⁹) Nm²/C²
r = 0.097 + 0.181 = 0.278 nm = (2.78 × 10⁻¹⁰) m
(k|q₁q₂|)/(r²) = (B/r⁹)
(k × |q₁q₂|) = (B/r⁷)
B = (k × |q₁q₂| × r⁷)
B = [8.99 × 10⁹ × 1.6 × 10⁻¹⁹ × 1.6 × 10⁻¹⁹ × (2.78 × 10⁻¹⁰)⁷]
B = (2.953 × 10⁻⁹⁵) N.m⁹
Anion is an atom with a negative charge
so in this case it woulld be O2-