Answer:
Final Velocity = √(eV/m)
Explanation:
The Workdone, W, in accelerating a charge, 2e, through a potential difference, V is given as a product of the charge and the potential difference
W = (2e) × V = 2eV
And this work is equal to change in kinetic energy
W = Δ(kinetic energy) = ΔK.E
But since the charge starts from rest, initial velocity = 0 and initial kinetic energy = 0
ΔK.E = ½ × (mass) × (final velocity)²
(Velocity)² = (2×ΔK.E)/(mass)
Velocity = √[(2×ΔK.E)/(mass)]
ΔK.E = W = 2eV
mass = 4m
Final Velocity = √[(2×W)/(4m)]
Final Velocity = √[(2×2eV)/4m]
Final Velocity = √(4eV/4m)
Final Velocity = √(eV/m)
Hope this Helps!!!
A soft metal core made into a magnet by the passage of electric current through a coil surrounding it.
1. I think you should compare diagrams of moon phases from the textbook to diagrams of moon phases online. Because if you pick D it will take to long and C will help you out whith 3 different things to look at.
2. The moon changes in appearances from the perspective of people on earth because it's revolving around the planet and the earth is revolving around the sun, so A. Hoped this helped.
Correct answer choice is :
A) From A to B is known as the wavelength and changing the pitch of the note will change its length.
Explanation:
The amount or quantity of period within two things, points, lines, etc. the state or fact of existing separate in space, as of one thing from another; remoteness. a linear amount of space: Seven miles is a distance too great to walk in an hour. Distance is a scalar quantity describing the interval in two points. It is just the measure of the interval.
Answer:
Perfectly inelastic collision
Explanation:
There are two types of collision.
1. Elastic collision : When the momentum of the system and the kinetic energy of the system is conserved, the collision is said to be elastic. For example, the collision of two atoms or molecules are considered to be elastic collision.
2. Inelastic collision: When the momentum the system is conserved but the kinetic energy is not conserved, the collision is said to be inelastic. For example, collision of a ball with the mud.
For a perfectly elastic collision, the two bodies stick together after collision.
Here, the meteorite collide with the Mars and buried inside it, the collision is said to be perfectly inelastic. here the kinetic energy of a body lost completely during the collision.