Answer:
28.5 m/s
18.22 m/s
Explanation:
h = 20 m, R = 20 m, theta = 53 degree
Let the speed of throwing is u and the speed with which it strikes the ground is v.
Horizontal distance, R = horizontal velocity x time
Let t be the time taken
20 = u Cos 53 x t
u t = 20/0.6 = 33.33 ..... (1)
Now use second equation of motion in vertical direction
h = u Sin 53 t - 1/2 g t^2
20 = 33.33 x 0.8 - 4.9 t^2 (ut = 33.33 from equation 1)
t = 1.17 s
Put in equation (1)
u = 33.33 / 1.17 = 28.5 m/s
Let v be the velocity just before striking the ground
vx = u Cos 53 = 28.5 x 0.6 = 17.15 m/s
vy = uSin 53 - 9.8 x 1.17
vy = 28.5 x 0.8 - 16.66
vy = 6.14 m/s
v^2 = vx^2 + vy^2 = 17.15^2 + 6.14^2
v = 18.22 m/s
Answer:
V = 0.714m/s
Explanation:
Full solution calculation can be found in the attachment below.
From the principle of conservation of linear momentum, the sum of momentum before collision equals the sum of momentum after collision.
Before collision only the train had momentum. After the collision the train and the boxcars stick together and move as one body. The initial momentum of the train is now shared with the boxcars as they move together as one body. The both move with a common velocity v.
See the attachment below for the solution calculation.
Answer:
There are total eight planets in the solar system and the average distance from the sun to each planet in increasing order is given below.
Explanation:
The average distance from the sun is listed below in increasing order.
1. Mercury - It is the most closet planet to Sun, 57 million km
2. Venus - 108 million km
3. Earth - 150 million km
4. Mars - 228 million km
5. Jupiter - 779 million km
6. Saturn - 1.43 billion km
7. Uranus - 2.88 billion km
8. Neptun - It is the most farthest from the Sun, 4.50 billion km