Answer:
A. The period of an oscillation does not depend upon amplitude.
Explanation:
The period of a spring-mass system is:
T = 1/f = 2π√(m/k)
where f is the frequency, m is the mass, and k is the spring constant.
The answer isn't B. There are no frictionless systems in the real world.
The answer isn't C or D. As shown, the frequency is a function of both the mass and the spring constant.
The answer isn't E. Turning motion into heat is not an advantage for a clock.
The correct answer is A. The period of the system does not depend on the amplitude.
C
Vegetable oil’s heat capacity is more as it can absorb more heat than water.
(a) The voltage that is produced in the secondary circuit is 1,800 V.
(b) The current that flows in the secondary circuit is 1 A.
<h3>Voltage in the secondary coil</h3>
Np/Ns = Vp/Vs
where;
- Np is number of turns in primary coil
- Ns is number of turns in secondary coil
- Vp is voltage in primary coil
- Vs is voltage in secondary coil
100/1500 = 120/Vs
Vs = (120 x 1500)/100
Vs = 1,800 V
<h3>Current in the secondary coil</h3>
Is/Ip = Vp/Vs
where;
- Is is secondary current
- Ip is primary current
Is = (IpVp)/Vs
Is = (15 x 120)/1800
Is = 1 A
Thus, the voltage that is produced in the secondary circuit is 1,800 V.
Learn more about voltage here: brainly.com/question/14883923
#SPJ1