Answer:
B
Explanation:
Heat increase molecular motion
Answer:
<h2>82.94 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 28.8 × 2.88 = 82.944
We have the final answer as
<h3>82.94 N</h3>
Hope this helps you
Answer:
time=4s
Explanation:
we know that in a RL circuit with a resistance R, an inductance L and a battery of emf E, the current (i) will vary in following fashion
, where
max=
Given that, at i(2)=
⇒
⇒
⇒
Applying logarithm on both sides,
⇒
⇒
⇒
Now substitute 
⇒
⇒
⇒
Applying logarithm on both sides,
⇒
⇒
⇒
now subs. 
⇒
also 
⇒
⇒
Answer:
4.6 m
Explanation:
First of all, we can find the frequency of the wave in the string with the formula:

where we have
L = 2.00 m is the length of the string
T = 160.00 N is the tension
is the mass linear density
Solving the equation,

The frequency of the wave in the string is transmitted into the tube, which oscillates resonating at same frequency.
The n=1 mode (fundamental frequency) of an open-open tube is given by

where
v = 343 m/s is the speed of sound
Using f = 37.3 Hz and re-arranging the equation, we find L, the length of the tube:

Answer:
Explanation:
No of atoms of Ra in 1 g of sample = 6.023 x 10²³ / 226
N = 2.66 x 10²¹
disintegration constant λ = .693 / half life
half life = 1620 x 365 x 60 x 60 x 24 = 5.1 x 10¹⁰ s
disintegration constant λ = .693 / 5.1 x 10¹⁰
radioactivity dn / dt = λN
= (.693 / 5.1 x 10¹⁰ ) x 2.66 x 10²¹
= .3614 x 10¹¹ per sec
= 3.614 x 10¹⁰ / s