Answer:
D) The heavier ball will have a higher temperature because the change of temperature is inversely proportional to mass.
Explanation:
As stated in the problem, the amount of heat released by each ball is

where
m is the mass of the ball
Cp is the specific heat of iron (so, it is equal for both balls)
is the change in temperature of each ball
In this problem, we are said that the amount of heat released by the two balls, Q, is the same. Cp is also the same: this means that the product
must be the same for the two balls. So, the mass and the change in temperature are inversely proportional: therefore, the heavier ball will have a smaller change in temperature. And since both balls starts from the same temperature, 100 C, this means that the heavier ball will reach a higher temperature than the lighter ball.
Answer:
B) R1 = 6 V and R2 = 6V
Explanation:
In series, both resistors will carry the same current.
that current will be I = V/R = 12 / (10 + 10) = 0.6 A
The voltage drop across each resistor is V = IR = 0.6(10) = 6 V
Answer:
a force that is able to act at a distance
Explanation:
:)
Answer:
A. Geocentric: This model is Earth Centered
. Retrograde motion is explained by epicycles
.
B. Heliocentric: This model is Sun centered. Retrograde motion is explained by the orbital speeds of planets
C. Both geocentric and heliocentric: Epicycles and deferents help explain planetary motion
. Planets move in circular orbits and with uniform motion
. The brightness of a planet increases when the planet is closest to Earth.
Explanation:
The principle of the Ptolemy's geocentric model was developed on the assumption that the center of the universe is the Earth. On the other hand, the principle of the Copernicus' heliocentric model was based on the assumption that the center of the universe is the sun. However, both models have a common ideology on uniform circular motion and epicycles.
A decrease in mass will decrease an objects weight because
weight = mass x gravitational constant