Answer:
The final and initial concentration of the acid and it's conjugate base are approximately equal, that is we use the weak acid approximation.
Explanation:
The Henderson-Hasselbalch is used to calculate the pH of a buffer solution. It depends on the weak acid approximation.
Since the weak acid ionizes only to a small extent, then we can say that [HA] ≈ [HA]i
Where [HA] = final concentration of the acid and [HA]i = initial concentration of the acid.
It also follows that [A^-] ≈ [A^-]i where [A^-] and[A^-]i refer to final and initial concentrations of the conjugate base hence the answer above.
Answer:
The number of positive charges in nucleus of an atoms are equal to the atomic number and also positive charges are equal to the negative charges which are electrons in neutral atom.
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
Electron:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol= e⁻
Mass= 9.10938356×10⁻³¹ Kg
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
Neutron and proton:
Neutron and proton are present inside the nucleus. Proton has positive charge while neutron is electrically neutral. Proton is discovered by Rutherford while neutron is discovered by James Chadwick in 1932.
Symbol of proton= P⁺
Symbol of neutron= n⁰
Mass of proton=1.672623×10⁻²⁷ Kg
Mass of neutron=1.674929×10⁻²⁷ Kg
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example if neutral atom has 6 protons than it must have 6 electrons. The sum of neutrons and protons is the mass number of an atom while the number of protons are number of electrons is the atomic number of an atom.
For example
The carbon have six protons and six neutrons so its atomic mass is 12 amu and atomic number is six.
Answer:
2.57 g of H₂
Solution:
The Balance Chemical Equation is as follow,
N₂ + 3 H₂ → 2 NH₃
According to Balance equation,
34.06 g (2 moles) NH₃ is produced by = 6.04 g (3 moles) of H₂
So,
14.51 g of NH₃ will be produced by = X g of H₂
Solving for X,
X = (14.51 g × 6.04 g) ÷ 34.06 g
X = 2.57 g of H₂
So to balance an equation, you need to get the same amount of each type of element on either side of the --> . So you pretty much are given the subscripts in the equations and you need to add coefficients (just normal numbers) in front of any formula that needs it, keeping anything balance.

turns into

These coefficient numbers are the molar ratios, so 2 moles of KCl3 for every 3 moles of O2 so 1. 3:2
Then you can use these ratios of find out how many moles of one thing are needed if you are given the amount of another.

and use cross multiplication to solve for whatever you don't know
<span />
It creates oxygen which every living thing needs to live. i hope this helps! :)