Answer:

Explanation:
Given:
vertical height of oil coming out of pipe, 
diameter of pipe, 
length of pipe, 
density of oil, 
viscosity of oil, 
Now, since the oil is being shot verically upwards it will have some initial velocity and will have zero final velocity at the top.
<u>Using the equation of motion:</u>

where:
v = final velocity
u = initial velocity
Putting the respective values:


<u>For Reynold's no. we have the relation as:</u>



Answer:
The Titius–Bode law (sometimes termed just Bode's law) is a hypothesis that the bodies in some orbital systems, including the Sun's, orbit at semi-major axes in a function of planetary sequence. The formula suggests that, extending outward, each planet would be approximately twice as far from the Sun as the one before.
Explanation:
Answer:
To solve this problem we will apply the principle of conservation of energy for which we have that the potential energy on a body, is equivalent to the work done on it at the given point. Therefore we will have the following equality
At the same time we know that work is equivalent to the Force applied over a given distance, so,
The potential energy is equivalent to the product between mass, gravity and height. Recall that the product of mass and gravity is equivalent to weight (The same given in the statement)
Equating,
Then,
Replacing,
Therefore the force needed to lift the piano is 600N
Explanation:
HOPE THIS HELPS!!!
You'd have an easier time using the equation if you understood where the equation comes from.
The law here ... the major principle to remember, the key, the fundamental truth, the big cookie ... is the fact that momentum is conserved. <em>The total momentum after they join up is the same as the total momentum before they meet.</em>
Momentum of an object is (mass) times (speed).
Now, list all the things you know, before and after the putty meets the ball:
<u>Before:</u><u> </u>There are two objects.
Mass of putty = 3 kg
Speed of putty = 5m/s
Momentum of putty = 3 x 5 = 15 kg-m/s.
Mass of ball = 5 kg
Speed of ball = zero
Momentum of ball = 5 x 0 = zero
Total momentum of both things = 15 kg-m/s
<u>After</u>: There is only one object, because they stuck together.
Mass of (putty+ball) = (3+5) = 8 kg
Speed of (putty+ball) = we don't know; that's what we have to find
Momentum of (putty+ball) = 8 x (speed)
===================================
We know that the momentum after is equal to the momentum before.
8 x (speed) = 15 kg-m/s
Divide each side by 8 :
Speed = 15 / 8 = <em>1.875 m/s </em> after they stick together.
During the period of constant acceleration, the car's average speed is (1/2) (16 + 32) = 24 m/s.
At that average speed, it covers 240 meters in 10 seconds.