Newtons Second Law of Motion
This is an example of refraction.
i hope this helps
Answer:
t=0.47s
Explanation:
the ball has uniformly accelerated movement due to gravity
Vo=initial speed=4.6m/s
g=gravity=-9.8m/s^2
Vf=final speed=0, the player must wait for the ball to stop. so the final speed will be 0
we can use the following ecuation
T=(Vf-Vo)/g
T=(0-4.6)/-9.8m/s^2
T=0.47s
Answer:
9.965 nF
Explanation:
The capacitance of the axon C = εA/d where ε = dielectric constant = 24.78 × 10⁻¹² F/m, A = surface area of axon = 2πrL where r = radius of axon = 8 μm = 8 × 10⁻⁶ m and L = length of axon = 8 cm = 8 × 10⁻² m and d = thickness of membrane = 0.01 μm = 0.01 × 10⁻⁶ m
So, C = εA/d
C = ε2πrL/d
Substituting the of the values variables into the equation, we have
C = ε2πrL/d
C = 24.78 × 10⁻¹² F/m × 2π × 8 × 10⁻⁶ m × 8 × 10⁻² m/0.01 × 10⁻⁶ m
C = 9964.63 × 10⁻²⁰ Fm/0.01 × 10⁻⁶ m
C = 996463 × 10⁻¹⁴ F
C = 9.96463 × 10⁻⁹ F
C = 9.96463 nF
C ≅ 9.965 nF
Answer:
The percentage of the mechanical energy of the oscillator lost in each cycle is 6.72%
Explanation:
Mechanical energy (Potential energy, PE) of the oscillator is calculated as;
PE = ¹/₂KA²
During the first oscillation;
PE₁ = ¹/₂KA₁²
During the second oscillation;
A₂ = A₁ - 0.0342A₁ = 0.9658A₁
PE₂ = ¹/₂KA₂²
PE₂ = ¹/₂K (0.9658A₁)²
PE₂ = (0.9658²)¹/₂KA₁²
PE₂ = (0.9328)¹/₂KA₁²
PE₂ = 0.9328PE₁
Percentage of the mechanical energy of the oscillator lost in each cycle;

Therefore, the percentage of the mechanical energy of the oscillator lost in each cycle is 6.72%