Answer: ok, its C
Explanation: I used D=26.4* 3 to calculat it
Answer:Oxygen
Explanation:
Oxygen gets reduced when iron is oxidized.
<u>Answer:</u> The half life of the reaction is 1190.7 seconds
<u>Explanation:</u>
The equation used to calculate rate constant from given half life for first order kinetics:

where,
k = rate constant of the reaction = 
= half life of the reaction = ?
Putting values in above equation, we get:

Hence, the half life of the reaction is 1190.7 seconds
Answer:
Statements Y and Z.
Explanation:
The Van der Waals equation is the next one:
(1)
The ideal gas law is the following:
(2)
<em>where n: is the moles of the gas, R: is the gas constant, T: is the temperature, P: is the measured pressure, V: is the volume of the container, and a and b: are measured constants for a specific gas. </em>
As we can see from equation (1), the Van der Waals equation introduces two terms that correct the P and the V of the ideal gas equation (2),<u> by the incorporation of the intermolecular interaction between the gases and the gases volume</u>. The term an²/V² corrects the P of the ideal gas equation since the measured pressure is decreased by the attraction forces between the gases. The term nb corrects the V of the ideal gas equation, <u>taking into account the volume occuppied by the gas in the total volume, which implies</u> a reduction of the total space available for the gas molecules.
So, the correct statements are the Y and Z: the non-zero volumes of the gas particles effectively decrease the amount of "empty space" between them and the molecular attractions between gas particles decrease the pressure exerted by the gas.
Have a nice day!
Answer:
232.5 g C2H6O2
Explanation:
The equation you need to use here is ΔTf = i Kf m
Since pure water freezes at 0 C, your ΔTf is just 4.46 C
i = 1 (ethylene glycol is a weak electrolyte)
Kf = molal freezing constant, which for water is 1.86 C/m
m = molality = x mols C2H6O2 / 1.15 kg H2O (don't know the moles of ethylene glycol we're dissolving yet)
Than,
4.46 C = 1.86 C/m (x mol C2H6O2 / 1.15 kg H2O)
Solve for x, you should get x = 2.75 mol C2H6O2
3.75 mol C2H6O2 (62 g C2H6O2 / 1 mol C2H6O2) = 232.5 g C2H6O2