Each capacitor carry the same charge 'q'.
Discussion:
The voltage from the battery is distributed equally across all of the capacitors when they are linked in series. The three identical capacitors' combined voltage is computed as follows:
= V₁ +V₂ +V₃
This voltage may also be calculated using capacitance and charge;
V = Q/ C
= V₁ +V₂ +V₃
Provided that the total charge is 'q', hence the total voltage can be expressed as:
= (Q/C₁) + (Q/C₂) + (Q/C₃) = Q(1/C₁ +1/C₂ +1/C₃)
Therefore from the above explanation, it is concluded that each and every capacitor carry same charge 'q'.
Learn more about the capacitor here:
brainly.com/question/17176550
#SPJ4
I found this using the app Socratic. When I took physics in high school it helped me so much.
There are a variety of waves from light waves to mechanical waves. Waves can exhibit different effects like the Doppler Effect.
All light waves behave in a similar manner. They either get transmitted, reflected, absorbed, refracted, polarized, diffracted, or scattered based off of the composition of the object and the wavelength of the light.
According to Wikipedia, “One important property of mechanical waves is that their amplitudes are measured in an unusual way, displacement divided by (reduced) wavelength. When this gets comparable to unity, significant nonlinear effects such as harmonic generation may occur, and, if large enough, may result in chaotic effects.” Mechanical waves are chaotic and its “amplitudes” are measured unusually.
Diffraction is when light bends around objects and spread after passing out through small openings. “Diffraction occurs with all waves, including sound waves, water waves, and electromagnetic waves such as light that the eye can see.”-Wikipedia. Here is the formula to Diffraction: <em>d </em>sin <em>θ </em>= <em>nλ</em>
Doppler effect can occur for any type of wave like sound or water waves. An example of this is when we hear a police car with its sirens on, coming towards us. The closer you are to the police car, the higher the wavelength, but the farther away you are, the lower the wavelength.
<em />
Answer:
a) 19440 km/h²
b) 10 sec
Explanation:
v₀ = initial velocity of the car = 45 km/h
v = final velocity achieved by the car = 99 km/h
d = distance traveled by the car while accelerating = 0.2 km
a = acceleration of the car
Using the kinematics equation
v² = v₀² + 2 a d
99² = 45² + 2 a (0.2)
a = 19440 km/h²
b)
t = time required to reach the final velocity
Using the kinematics equation
v = v₀ + a t
99 = 45 + (19440) t
t = 0.00278 h
t = 0.00278 x 3600 sec
t = 10 sec