The gravitational force between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is their separation
In this problem, the first object has a mass of

, while the second "object" is the Earth, with mass

. The distance of the object from the Earth's center is

; if we substitute these numbers into the equation, we find the force of gravity exerted by the Earth on the mass of 0.60 kg:
Answer:
V = 4.63 m/s
V = 11.31 m/s
Explanation:
Given,
The distance traveled by the bus, towards north, d = 2.5 km
= 2500 m
The time taken by the trip is, t = 9 min
= 540 s
The velocity of the bus,
V = d / t
= 2500 / 540
= 4.63 m/s
At another point, the bus travels at a constant speed of v = 18 m/s
Therefore the velocity becomes
V = (4.63 + 18)/2
= 11.31 m/s
Hence, the velocity of the bus, V = 11.31 m/s
Planets in our solar system do not revolve around the sun in perfect circles. Their orbits are more like ovals that scientists describe as elliptical. It is one of Kepler's laws. The sun is the focus of all the planets. The correct answer is D.
Answer:When white light strikes an object, each individual frequency of light is transmitted, reflected, or absorbed, depending on the properties of the surface molecules. If all frequencies are absorbed by the object, then it appears black. If all frequencies are reflected, then it appears white.
Explanation: