A sound wave<span> in a steel rail </span>has<span> a </span>frequency of<span> 620 </span>Hz<span> and a </span>wavelength<span> of 10.5 ... Find the </span>speed<span> of </span>a wave<span> with a </span>wavelength of 5<span> m and a </span>frequency of<span> 68 </span>Hz<span>.</span>
For astronomical objects, the time period can be calculated using:
T² = (4π²a³)/GM
where T is time in Earth years, a is distance in Astronomical units, M is solar mass (1 for the sun)
Thus,
T² = a³
a = ∛(29.46²)
a = 0.67 AU
1 AU = 1.496 × 10⁸ Km
0.67 * 1.496 × 10⁸ Km
= 1.43 × 10⁹ Km
You could try the "Spinning Bucket" or the "Center Of Gravity" experiment. There are plenty more that you could research! Hope this helped :)
Answer:
≅ 17000 years or 1.7 x 10⁴ years
Explanation:
time= total energy/power
= (10⁸J/kg)(2x10³⁰ kg) / 3.8 x 10²⁶ J/s
= 526,315,789,473 s
= 16689 years
≅ 17000 years or 1.7 x 10⁴ years