Answer:
μ = 0.18
Explanation:
Let's use Newton's second Law, the coordinate system is horizontal and vertical
Before starting to move the box
Y axis
N-W = 0
N = W = mg
X axis
F -fr = 0
F = fr
The friction force has the formula
fr = μ N
fr = μ m g
At the limit point just before starting the movement
F = μ m g
μ = F / m g
calculate
μ = 34.8 / (19.8 9.8)
μ = 0.18
Answer:

Explanation:
given,
Wave vibrates = 37.6
time = 27.9 s
maximum distance travel = 450 cm
time = 11.3 s
wavelength = ?
frequency of wave

f = 1.35 Hz
Speed of wave

v = 39.82 cm/s
wavelength of wave
v = fλ



Hence, wavelength of the wave is equal to 25.79 cm.
I want to say that they will be primarily flat but I honestly don't know
Answer:
Part a)

Part b)

Since the distance of other building is 15 m so YES it can make it to other building
Part c)

direction of velocity is given as
![[tex]\theta = 26.35 degree](https://tex.z-dn.net/?f=%5Btex%5D%5Ctheta%20%3D%2026.35%20degree)
Explanation:
Part a)
acceleration due to gravity on this planet is 3/4 times the gravity on earth
So the acceleration due to gravity on this new planet is given as


now the vertical displacement covered by the canister is given as

now by kinematics we have



Part b)
Horizontal speed of the canister is given as

now the distance moved by it



Since the distance of other building is 15 m so YES it can make it to other building
Part c)
Final velocity in X direction will remains the same

final velocity in Y direction



now magnitude of velocity is given as



direction of velocity is given as


![[tex]\theta = 26.35 degree](https://tex.z-dn.net/?f=%5Btex%5D%5Ctheta%20%3D%2026.35%20degree)
Explanation:
It is given that,
Velocity of the particle moving in straight line is :

We need to find the distance (x) traveled by the particle during the first t seconds. It is given by :


Using by parts integration, we get the value of x as :

Hence, this is the required solution.