Answer:
a) speed when Jack sees the pot : 12.92 meters per second
b) height difference 163.115 meters
Explanation:
First to calculate te initial speed we use the acceleration formula:
a= v1-v0/t
Acceleration being gravity's acceleration (9.8 m/s^2)
v1 being the speed when Jill sees the pot
v0 when Jack sees it
and t the time between
Solving for v0 it would be
v1 - a*t = v0
replacing

For the second question we use the position formula setting y0 and t0 as the position and time when jack sees the pot. (and setting the positive axis downward I.E. one meter below jack would be 1m not -1m)
The formula is

replacing

Explanation:
The object is moving along the parabola y = x² and is at the point (√2, 2). Because the object is changing directions, it has a centripetal acceleration towards the center of the circle of curvature.
First, we need to find the radius of curvature. This is given by the equation:
R = [1 + (y')²]^(³/₂) / |y"|
y' = 2x and y" = 2:
R = [1 + (2x)²]^(³/₂) / |2|
R = (1 + 4x²)^(³/₂) / 2
At x = √2:
R = (1 + 4(√2)²)^(³/₂) / 2
R = (9)^(³/₂) / 2
R = 27 / 2
R = 13.5
So the centripetal force is:
F = m v² / r
F = m (5)² / 13.5
F = 1.85 m
Answer:
The correct answer is "6666.67 N".
Explanation:
The given values are:
Mass,
m = 0.100
Relative speed,
v = 4.00 x 10³
time,
t = 6.00 x 10⁻⁸
As we know,
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
This type of listening response is called back-channel signal. This allows the speaker to know that the listener is attentive or willing to engage a conversation between them. It is shown through short utterances, facial expressions, head nods and others.