<span>Germanium
To determine which melts first, convert their melting temperatures so they're both expressed on same scale. It doesn't matter what scale you use, Kelvin, Celsius, of Fahrenheit. Just as long as it's the same scale for everything. Since we already have one substance expressed in Kelvin and since it's easy to convert from Celsius to Kelvin, I'll use Kelvin. So convert the melting point from Celsius to Kelvin for Gold by adding 273.15
1064 + 273.15 = 1337.15 K
So Germanium melts at 1210K and Gold melts at 1337.15K. Germanium has the lower melting point, so it melts first.</span>
<span>When the green arrow and solid red light is illuminated, </span>means you turn in the direction of the arrow.
Answer:
The bulk modulus of the liquid is 1.534 x 10¹⁰ N/m²
Explanation:
Given;
density of the liquid, ρ = 1500 kg/m³
frequency of the wave, F = 410 Hz
wavelength of the sound, λ = 7.80 m
The speed of the wave is calculated as;
v = Fλ
v = 410 x 7.8
v = 3,198 m/s
The bulk modulus of the liquid is calculated as;

Therefore, the bulk modulus of the liquid is 1.534 x 10¹⁰ N/m²
Explanation:
s = ut + 1/2 a t^2
200 = 0 * 6 + 1/2 * a * (6)^2
200 = 1/2 * a * 36
200 = 18 a
a = 200/18
a= 11.1m/sec^2
v = u + at
v = 0 + 11.1 * 6
v = 66.6m/s
hope it helps you
Answer:
this is were you get everything
Explanation: