Answer:
1. Mg (s) + 2Na+(aq) → 2Na(s) + Mg²⁺(aq)
2. 2K(s) + Cd²⁺(aq) → 2K⁺(aq) + Cd(s)
Explanation:
The net ionic equation of a reaction express only the chemical species that are involved in the reaction:
1. Mg (s) + Na2CrO4 (aq) → 2Na + MgCrO4(aq)
The ionic equation:
Mg (s) + 2Na+(aq) + CrO4²⁻ (aq) → 2Na + Mg²⁺ + CrO4²⁻(aq)
Subtracting the ions that don't change:
<h3>Mg (s) + 2Na+(aq) → 2Na + Mg²⁺</h3>
2. 2K(s) + Cd(NO3)2(aq) → 2KNO3(aq) + Cd(s)
The ionic equation:
2K(s) + Cd²⁺(aq) + 2NO3⁻(aq) → 2K⁺(aq) + 2NO3⁻(aq) + Cd(s)
Subtracting the ions that don't change:
<h3>2K(s) + Cd²⁺(aq) → 2K⁺(aq) + Cd(s)</h3>
Answer:
27 liters of hydrogen gas will be formed
Explanation:
Step 1: Data given
Number of moles C = 1.03 moles
Pressure H2 = 1.0 atm
Temperature = 319 K
Step 2: The balanced equation
C +H20 → CO + H2
Step 3: Calculate moles H2
For 1 mol C we need 1 mol H2O to produce 1 mol CO an 1 mol H2
For 1.03 moles C we'll have 1.03 moles H2
Step 4: Calculate volume H2
p*V = n*R*T
⇒with p = the pressure of the H2 gas = 1.0 atm
⇒with V = the volume of H2 gas = TO BE DETERMINED
⇒with n = the number of moles H2 gas = 1.03 moles
⇒with R = the gas constant = 0.08206 L*Atm/mol*K
⇒with T = the temperature = 319 K
V = (n*R*T)/p
V = (1.03 * 0.08206 *319) / 1
V = 27 L
27 liters of hydrogen gas will be formed
Li(s) (answer A)
Li is strongest reducing agent because of the lowest standard reduction potential. when something is oxidized, it reduces another substance, becoming a reducing.Hence Lithium is strongest reducing agent. Reducing agent is stronger when it has a more positive oxidation potential.
i believe the answer is success of a policy. if this was correct please mark brainliest and lmk if you have any more questions x
At first sight it doesn't bode well. The key is in how firmly the protons and neutrons are held together. In the event that an atomic response produces cores that are more firmly bound than the firsts then vitality will be created, if not you should place vitality into make the response happen.