The order of reaction with respect to a is 4 and with respect to b is 5 for a reaction that obeys the rate law.
The order of reaction is equal sum of power of concentration of the each reactant present in the reaction that obeys the rate law . The order of individual reactant or species present in the rate law is equal to the power of the of concentration of the respective species or reactant .
Example : If rate law is given as,
rate = k![[a]^{4} [b]^{5}](https://tex.z-dn.net/?f=%5Ba%5D%5E%7B4%7D%20%5Bb%5D%5E%7B5%7D)
The order of reaction with respect to a is 4 and with respect to b is 5 for a reaction that obeys the rate law.
To learn more about order of reaction please click here
brainly.com/question/1769080
#SPJ4
Answer:
to calculate the mass of limestone magnesium used.
Explanation:
Answer:
-10778.95 J heat must be removed in order to form the ice at 15 °C.
Explanation:
Given data:
mass of steam = 25 g
Initial temperature = 118 °C
Final temperature = 15 °C
Heat released = ?
Solution:
Formula:
q = m . c . ΔT
we know that specific heat of water is 4.186 J/g.°C
ΔT = final temperature - initial temperature
ΔT = 15 °C - 118 °C
ΔT = -103 °C
now we will put the values in formula
q = m . c . ΔT
q = 25 g × 4.186 J/g.°C × -103 °C
q = -10778.95 J
so, -10778.95 J heat must be removed in order to form the ice at 15 °C.
Answer:
The molality of the KCl solution is 11.8 molal
Explanation:
Step 1: Data given
Mol fracrion KCl = 0.175
Molar mass KCl = 74.55 g/mol
Molar mass H2O = 18.02 g/mol
Step 2: Calculate mol fraction H2O
mol fraction H2O = 1 - 0.175 = 0.825
Step 3: Calulate mass of H2O
Suppose the total moles = 1.0 mol
Mass H2O = moles H2O * molar mass
Mass H2O = 0.825 * 18.02 g/mol
Mass H2O = 14.87 grams = 0.01487 kg
Step 4: Calculate molality
Molality KCl = 0.175 / 0.01487 kg
Molality KCl = 11.8 molal
The molality of the KCl solution is 11.8 molal
Rutherford was one of the early scientists who worked on the atomic model. Before his discovery of the nucleus, the widely accepted theory was J.J Thomson's Plum Pudding Model. In this model, all the protons, electrons and neutrons are in the nucleus. But the electrons are more in number such that the electrons act as the 'pudding' and the proton and nucleus the 'plum'. This was Rutherford's hypothesis in his gold foil experiment. In order to test the Plum Pudding model, he hypothesized that when a beam of light is aimed at the atom, it would not diffract because the charges in the nucleus are well-distributed. However, his experiment disproved Thomson's model. Some light indeed passed through but a few was diffracted back to the source. He concluded that this was because there is a dense mass inside the atom called nucleus. Thus, from there on, he proposed the model that the electrons are orbiting around the nucleus.