Answer:
r = 2161.9 m
Explanation:
Aerodynamic lift(L) is perpendicular to the wing, which is tilted 40 degrees to the horizontal.
Since the plane is moving in a horizontal circle, the vertical component of the lift must cancel the weight W of the airplane, but the horizontal component is the centripetal force that keeps it in a circle.
L is perpendicular to wing at angle θ with respect to horizontal
Thus,
Vertical component of lift is:
L cosθ = W = mg
Thus, m = L cosθ / g - - - - (eq1)
Horizontal component of lift is:
L sinθ = centripetal force = mv² / r - - - - (eq2)
Combining equations 1 and 2,we have;
L sinθ = (L cosθ / g)(v² / r)
L cancels out on both sides to give;
tanθ = v²/ rg
r = v² / (g tanθ)
We are given;
velocity; v = 480 km/hr = 480 x 10/36 = 133.33 m/s
r = 133.33²/[(9.8) tan(40)] = 2161.9 m
Answer:
a. Velocity
Explanation:
The slope of the tangent line on a position-time graph is the instantaneous velocity.
Explanation:
The gravitational force equation is the following:

Where:
G = Gravitational constant = 
m1 & m2 = the mass of two related objects
r = distance between the two related objects
The problem gives you everything you need to plug into the formula, except for the gravitational constant. Let me know if you need further clarification.
Explanation :
It is given that,
Diameter of the coil, d = 20 cm = 0.2 m
Radius of the coil, r = 0.1 m
Number of turns, N = 3000
Induced EMF, 
Magnitude of Earth's field, 
We need to find the angular frequency with which it is rotated. The induced emf due to rotation is given by :




So, the angular frequency with which the loop is rotated is 159.15 rad/s. Hence, this is the required solution.
Answer:
Voltage-gated calcium ion channels open, and calcium ions diffuse into the cell