Answer:
23430.4 J.
Explanation:
From the question given above, the following data were obtained:
Mass (M) = 70 g
Initial temperature (T₁) = 10 °C
Final temperature (T₂) = 90 °C
Specific heat capacity (C) = 4.184 J/gºC
Heat (Q) required =?
Next, we shall determine the change in the temperature of water. This can be obtained as follow:
Initial temperature (T₁) = 10 °C
Final temperature (T₂) = 90 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 90 – 10
ΔT = 80 °C
Finally, we shall determine the heat energy required to heat up the water. This can be obtained as follow:
Mass (M) = 70 g
Change in temperature (ΔT) = 80 °C
Specific heat capacity (C) = 4.184 J/gºC
Heat (Q) required =?
Q = MCΔT
Q = 70 × 4.184 × 80
Q = 23430.4 J
Therefore, 23430.4 J of heat energy is required to heat up the water.
Answer:
because the ecstatic
Explanation:
balloons have energy on them and so does your hair so when you rub them together it causes static
H2O
This equation is a double displacement reaction, and it forms H2CO3, which is very unstable and separates into H2O and CO2.
Answer & Explanation:
Kindly find the attached presentation.
Answer:
(a) ₁₉K: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹
(b) ₁₀Ne: 1s² 2s² 2p⁶
---
(a) 3
(b) 6
(c) 7
Explanation:
We can state the ground-state electron configuration for each element following Aufbau's principle.
(a) ₁₉K: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹
(b) ₁₀Ne: 1s² 2s² 2p⁶
Second part
(a) Al belongs to Group 13 in the Periodic Table. It has 13-10=3 electrons in the valence shell.
(b) O belongs to Group 16 in the Periodic Table. It has 16-10=6 electrons in the valence shell.
(c) F belongs to Group 17 in the Periodic Table. It has 17-10=7 electrons in the valence shell.