When reversing a given reaction, we simply change the sign of the standard enthalpy change value. Therefore, the reaction will become:
H₂O → H₂ + 0.5O₂, ΔH = 286kJ
This is because if a certain amount of energy is released when a reaction occurs, the same amount of energy must be supplied for the reaction to occur in the reverse direction.
Answer:
A. The balloons will increase to twice their original volume.
Explanation:
Boyle's law states that the pressure exerted on a gas is inversely proportional to the volume occupied by the gas at constant temperature. That is:
P ∝ 1/V
P = k/V
PV = k (constant)
P = pressure, V = volume.

Let the initial pressure of the balloon be P, i.e.
, initial volume be V, i.e.
. The pressure is then halved, i.e.

Therefore the balloon volume will increase to twice their original volume.
Renewable energy has the potential to have all the same applications as non-renewable. But we currently don't have the resources and potential.
So I would say the answer would be B, but this question is somewhat confusing.
Answer:
(a) Pair 1: H₂S and HS⁻
Pair 2: NH₃ and NH₄⁺
(b) Pair 1: HSO₄⁻ and SO₄⁻
Pair 2: NH₃ and NH₄⁺
(c) Pair 1: HBr and Br⁻
Pair 2: CH₃O⁻ and CH₃OH
(d) Pair 1: HNO₃ and NO₃⁻
Pair 2: H₃O⁺
Explanation:
When an acid loses its proton (H⁺), a conjugate base is produced.
When a base accepts a proton (H⁺), it forms a conjugate acid.
(a) H₂S is an acid. When it loses a proton, it forms the conjugate base HS⁻.
NH₃ is a base. When NH₃ gains a proton, it forms the conjugate acid NH₄⁺
(b) The acid HSO₄⁻ loses a H⁺ ion and forms the conjugate base SO₄²⁻.
The base NH₃ accepts a H⁺ ion to form the conjugate acid NH₄⁺.
(c) HBr is an acid. When loses the H⁺ ion, it forms the conjugate base Br⁻.
CH₃O⁻ accepts a H⁺ ion to form the conjugate acid CH₃OH.
(d) HNO₃ loses a proton to form the conjugate base NO₃⁻.
H₂O gains a proton to form the conjugate acid H₃O⁺.
Answer:
Here’s what I get.
Explanation:
- The atomic number is the number of protons in the nucleus of an atom.
- The number of protons determines the number of electrons.
- The number of electrons determines the chemical properties of the element,
Thus, the atomic number determines the identity of the element.
The atomic mass does not affect the chemical properties, so different isotopes of an element behave alike.