Answer:

Explanation:
<u>Motion with Constant Acceleration</u>
A body moves with constant acceleration when the speed changes uniformly in time. The equation used to find the final speed vf is

Where vo is the initial speed, a is the acceleration, and t is the time.
The cyclist has an initial speed of vo=10 miles/hour and ends up at vf=20 miles/hour in t=5 seconds.
Both speeds are given in miles/hour and we must convert it to m/s:
1 mile/hour = 0.44704 m/s
10 mile/hour = 4.47 m/s
20 mile/hour = 8.94 m/s
The acceleration is calculated by solving for a:



The concept required to solve this problem is associated with potential energy. Recall that potential energy is defined as the product between mass, gravity, and change in height. Mathematically it can be described as

Here,
= Change in height
m = mass of super heroine
g = Acceleration due to gravity
The change in height will be,

The final position of the heroin is below the ground level,

The initial height will be the zero point of our system of reference,


Replacing all this values we have,



Since the final position of the heroine is located below the ground, there will net loss of gravitational potential energy of 10744.81J
Answer:
The focus of Lesson 1 is Newton's first law of motion - sometimes referred to as the law of inertia. An object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force.
The formula for weight is always weight=mass X gravitational field strength.
We already know the mass is 75kg.
The gravitational field strength on the moon is 1.6N. To find out the weight, we can substitute these values in to the formula.
Weight=75 X 1.6
Weight= 120N
Weight is measured on Neutons as it is a force.
<span>A. Rocket A will travel farther horizontally than rocket B.
This is because from the x axis, 40 m/s at 90 degrees travels directly vertical. 40 m/s at 70 degrees is slightly horizontal, so it will travel further horizontally.</span>