<u>We are given:</u>
Mass of water: 119 grams
We know that one mole of a gas occupies 22.4L of volume
<u>Number of moles of water:</u>
Number of moles = given mass / Molar mass
Number of moles = 119 / 18 [molar mass of water = 18 grams/mol]
Number of moles = 6.61 moles
<u>Volume occupied:</u>
Volume = number of moles * 22.4 L
Volume = 6.61 * 22.4
Volume = 148L
Volume (in mL) = 1.48 * 10⁻¹ mL
Answer:

Explanation:
= Initial pressure = 200 kPa
= Final pressure
= Initial temperature = 
= Final temperature = 
We have the relation

The pressure that would be exerted after the temperature change is
.
Answer: increases
Explanation:
Matter exists in three different states, they are solids, liquids and gases. And each of them contains molecules with a certain amount of kinetic energy.
Hence, the addition of heat changes a substance from a liquid to a gas through a process called vaporization, whereby liquid molecules on changing to gases acquire a higher kinetic energy, and move more freely within the containing vessel.
Thus, the higher kinetic energy explains the increase in the average distance between molecules.