Calculate the molar mass of Ca3P2 in grams per mole or search for a chemical formula or substance.
Answer:
The pH of the solution is 11.48.
Explanation:
The reaction between NaOH and HCl is:
NaOH + HCl → H₂O + NaCl
From the reaction of 3.60x10⁻³ moles of NaOH and 5.95x10⁻⁴ moles of HCl we have that all the HCl will react and some of NaOH will be leftover:
![n_{NaOH}} = n_{i_{NaOH}} - n_{HCl} = 3.60 \cdot 10^{-3} moles - 5.95 \cdot 10^{-4} moles = 3.01 \cdot 10^{-3} moles](https://tex.z-dn.net/?f=%20n_%7BNaOH%7D%7D%20%3D%20n_%7Bi_%7BNaOH%7D%7D%20-%20n_%7BHCl%7D%20%3D%203.60%20%5Ccdot%2010%5E%7B-3%7D%20moles%20-%205.95%20%5Ccdot%2010%5E%7B-4%7D%20moles%20%3D%203.01%20%5Ccdot%2010%5E%7B-3%7D%20moles%20)
Now, we need to find the concentration of the OH⁻ ions.
![[OH^{-}] = \frac{n_{NaOH}}{V}](https://tex.z-dn.net/?f=%20%5BOH%5E%7B-%7D%5D%20%3D%20%5Cfrac%7Bn_%7BNaOH%7D%7D%7BV%7D%20)
Where V is the volume of the solution = 1.00 L
![[OH^{-}] = \frac{n_{NaOH}}{V} = \frac{3.01 \cdot 10^{-3} moles}{1.00 L} = 3.01 \cdot 10^{-3} mol/L](https://tex.z-dn.net/?f=%20%5BOH%5E%7B-%7D%5D%20%3D%20%5Cfrac%7Bn_%7BNaOH%7D%7D%7BV%7D%20%3D%20%5Cfrac%7B3.01%20%5Ccdot%2010%5E%7B-3%7D%20moles%7D%7B1.00%20L%7D%20%3D%203.01%20%5Ccdot%2010%5E%7B-3%7D%20mol%2FL%20)
Finally, we can calculate the pH of the solution as follows:
![pOH = -log([OH^{-}]) = -log(3.01 \cdot 10^{-3}) = 2.52](https://tex.z-dn.net/?f=%20pOH%20%3D%20-log%28%5BOH%5E%7B-%7D%5D%29%20%3D%20-log%283.01%20%5Ccdot%2010%5E%7B-3%7D%29%20%3D%202.52%20)
![pH + pOH = 14](https://tex.z-dn.net/?f=%20pH%20%2B%20pOH%20%3D%2014%20)
![pH = 14 - pOH = 14 - 2.52 = 11.48](https://tex.z-dn.net/?f=%20pH%20%3D%2014%20-%20pOH%20%3D%2014%20-%202.52%20%3D%2011.48%20)
Therefore, the pH of the solution is 11.48.
I hope it helps you!
Answer:
Using the standardized NaOH solution in the previous question, the titration of 5.00 mL of vinegar required 42.25 mL of NaOH. What is the % of acetic acid in the vinegar? Concentration of NaOH from previous question= 0.0986 M. David C
Explanation:
Eh?
Answer:
2Al(s) +3Ni²⁺(aq) ⟶ 2Al³⁺(aq) + 3Ni(s)
Explanation:
The unbalanced equation is
Al(s) + Ni²⁺(aq) ⟶ Ni(s) + Al³⁺(aq)
(i) Half-reactions
Al(s) ⟶ Al³⁺(aq) + 3e⁻
Ni²⁺(aq) + 2e⁻ ⟶ Ni(s)
(ii) Balance charges
2 × [Al(s) ⟶ Al³⁺(aq) + 3e⁻]
3 × [Ni²⁺(aq) + 2e⁻ ⟶ Ni(s)]
gives
2Al(s) ⟶ 2Al³⁺(aq) + 6e⁻
3Ni²⁺(aq) + 6e⁻ ⟶ 3Ni(s)
(iii) Add equations
2Al(s) ⟶ 2Al³⁺(aq) + 6e⁻
<u>3Ni²⁺(aq) + 6e⁻ ⟶ 3Ni(s) </u>
2Al(s) +3Ni²⁺(aq) + <em>6e</em>⁻ ⟶ 2Al³⁺(aq) + 3Ni(s) + <em>6e⁻
</em>
Simplify (cancel electrons)
2Al(s) +3Ni²⁺(aq) ⟶ 2Al³⁺(aq) + 3Ni(s)