1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anzhelika [568]
3 years ago
10

A billiard ball strikes and rebounds from the cushion of a pool table perpendicularly. The mass of the ball is 0.38 kg The ball

approaches the cushion with a velocity of +2.20 m/s and rebounds with a velocity of -1.70 m/s. The ball remains in contact with the cushion for a time of 3.40 x 10^-3 s. What is the average net force (magnitude and direction) exerted on the ball by the cushion?
Physics
1 answer:
xxTIMURxx [149]3 years ago
7 0

Answer:

Force is 432.94 N along the rebound direction of ball.

Explanation:

Force is rate of change of momentum.

\texttt{Force}=\frac{\texttt{Final momentum-Initial momentum}}{\texttt{Time}}

Final momentum = 0.38 x -1.70 = -0.646 kgm/s

Initial momentum = 0.38 x 2.20 = 0.836 kgm/s

Change in momentum = -0.646 - 0.836 = -1.472 kgm/s

Time = 3.40 x 10⁻³ s

\texttt{Force}=\frac{\texttt{Final momentum-Initial momentum}}{\texttt{Time}}=\frac{-1.472}{3.40\times 10^{-3}}\\\\\texttt{Force}=-432.94N

Force is 432.94 N along the rebound direction of ball.

You might be interested in
Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
Sidana [21]

1a) Bill and the dog must have a speed of 13.0 m/s

1b) The speed of the dog must be 22.5 m/s

2a) The ball passes over the outfielder's head at 3.33 s

2b) The ball passes 1.2 m above the glove

2c) The player can jump after 2.10 s or 3.13 s after the ball has been hit

2d) One solution is when the player is jumping up, the other solution is when the player is falling down

Explanation:

1a)

The motion of the ball in this problem is a projectile motion, so it follows a parabolic path which consists of two independent motions:

- A uniform motion (constant velocity) along the horizontal direction

- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction

In part a), we want to know at what speed Bill and the dog have to run in order to intercept the ball as it lands on the ground: this means that Bill and the dog must have the same velocity as the horizontal velocity of the ball.

The ball's initial speed is

u = 15 m/s

And the angle of projection is

\theta=30^{\circ}

So, the ball's horizontal velocity is

v_x = u cos \theta = (15)(cos 30)=13.0 m/s

And therefore, Bill and the dog must have this speed.

1b)

For this part, we have to consider the vertical motion of the ball first.

The vertical position of the ball at time t is given by

y=u_yt+\frac{1}{2}at^2

where

u_y = u sin \theta = (15)(sin 30) = 7.5 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

The ball is at a position of y = 2 m above the ground when:

2=7.5t + \frac{1}{2}(-9.8)t^2\\4.9t^2-7.5t+2=0

Which has two solutions: t=0.34 s and t=1.19 s. We are told that the ball is falling to the ground, so we have to consider the second solution, t = 1.19 s.

The horizontal distance covered by the ball during this time is

d=v_x t =(13.0)(1.19)=15.5 m

The dog must be there 0.5 s before, so at a time

t' = t - 0.5 = 0.69 s

So, the speed of the dog must be

v_x' = \frac{d}{t'}=\frac{15.5}{0.69}=22.5 m/s

2a)

Here we just need to consider the horizontal motion of the ball.

The horizontal distance covered is

d=98 m

while the horizontal velocity of the ball is

v_x = u cos \theta = (34)(cos 30)=29.4 m/s

where u = 34 m/s is the initial speed.

So, the time taken for the ball to cover this distance is

t=\frac{d}{v_x}=\frac{98}{29.4}=3.33 s

2b)

Here we need to calculate the vertical position of the ball at t = 3.33 s.

The vertical position is given by

y= h + u_y t + \frac{1}{2}at^2

where

h = 1.2 m is the initial height

u_y = u sin \theta = (34)(sin 30)=17.0 m/s is the initial vertical velocity

a=g=-9.8 m/s^2 is the acceleration of gravity

Substituting t = 3.33 s,

y=1.2+(17)(3.33)+\frac{1}{2}(-9.8)(3.33)^2=3.5 m

And sinc the glove is at a height of y' = 2.3 m, the difference in height is

y - y' = 3.5 - 2.3 = 1.2 m

2c)

In order to intercept the ball, he jumps upward at a vertical speed of

u_y' = 7 m/s

So its position of the glove at time t' is

y'= h' + u_y' t' + \frac{1}{2}at'^2

where h' = 2.3 m is the initial height of the glove, and t' is the time from the moment when he jumps. To catch the ball, the height must be

y' = y = 3.5 m (the height of the ball)

Substituting and solving for t', we find

3.5 = 2.3 + 7t' -4.9t'^2\\4.9t'^2-7t'+12 = 0

Which has two solutions: t' = 0.20 s, t' = 1.23 s. But this is the time t' that the player takes to reach the same height of the ball: so the corresponding time after the ball has been hit is

t'' = t -t'

So we have two solutions:

t'' = 3.33 s - 0.20 s = 3.13 s\\t'' = 3.33 s - 1.23 s = 2.10 s

So, the player can jump after 2.10 s or after 3.13 s.

2d)

The reason for the two solutions is the following: the motion of the player is a free fall motion, so initially he jump upwards, then because of gravity he is accelerated downward, and therefore eventually he reaches a maximum height and then he  falls down.

Therefore, the two solutions corresponds to the two different part of the motion.

The first solution, t'' = 2.10 s, is the time at which the player catches the ball while he is in motion upward.

On the other hand, the second solution t'' = 3.13 s, is the time at which the player catches the ball while falling down.

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

7 0
3 years ago
If Juan upgrades from a sports car to a large truck, what will happen to the
Brrunno [24]

Answer:

The force must increase

Explanation:

According to newton's second law "force is the product of mass and acceleration".

      Force  = mass  x acceleration

Now, the mass of the sports car is lesser compared to that of the truck. Therefore, to take both automobiles to the same speed, enough force must be applied by the engine of the truck.

There must be an increase in the force in order to make both automobiles attain the same speed.

5 0
2 years ago
What can be contracted through contact with saliva?
m_a_m_a [10]
Tuberculosis mrsa are some things that are contracted by saliva where spores in the air from an infected person
sneezing as well
4 0
3 years ago
Which type of employee would most likely spend the majority of work time in a vehicle? O a Corrections Officer at a jail O a Dis
dsp73

Answer:

Paramedic

Explanation:

They will be on the move the whole time

8 0
3 years ago
Read 2 more answers
The Earth is constantly spinning on its axis, like you might spin a basketball on your finger. It is this spinning of the Earth
mash [69]

<u>Answer:</u>

The spinning of the earth around its own axis causes day and night.

<u>Explanation:</u>

Earth has two types of motions. It spins around its own axis causing day and night every 12 hours and completes a rotation in 23.93 hours that make a full day. The part of the earth that faces sunlight during spinning experiences day and the other part has night.  It also rotates around the sun and completes one rotation in 365 days that makes a year.

5 0
3 years ago
Other questions:
  • Salmon often jump waterfalls to reach their
    5·1 answer
  • Tell the value of the underlined digit 843,208,732,833 eight is underlined
    12·2 answers
  • Which of the following statements is true?
    12·2 answers
  • Which statement is true about air pressure acting in an object
    13·1 answer
  • 60mil/hr to m/s convert
    14·1 answer
  • In a double-slit experiment, light and dark regions are observed on a screen. what causes a dark region to be observed between t
    7·1 answer
  • Density is mass / volume. (D = m/V) A loaf of bread has a volume of 2270 cm3 and a mass of 454 g. What is the density of the bre
    7·1 answer
  • A swimmer is capable of swimming at 1.4m/s in still water. a. How far downstream will he land if he swims directly across a 180m
    6·2 answers
  • A ball rolls up a ramp with a velocity of 8.0 m/s. How high up the ramp does it travel?
    8·1 answer
  • Two resistors are connected in parallel two equivalent resistance is 3,75 ohm if one resistor has a resistance of 10ohm what is
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!