Answer:
4.6×10^-7 m or 0.46nm
Explanation:
From
Wo= hc/λ
Where:
Wo= work function of the metal
h= planks constant
c= speed of light
λ= wavelength
λ= hc/Wo
λ= 6.6×10^-34 × 3×10^8/4.30×10^-19
λ= 4.6×10^-7 m
Kinetic energy = 1/2 * mass * velocity^2
In this case,
KE = 1/2 * 1569 kg * (15 (m/s))^2 = 176,5 kN
Is there any answers? Or is it asking you to choose?
I will assume that big Joe is big Jim. The equation for the momentum is p=m*v, where m is the mass of the body and v is the velocity. Big Joe has a mass m=105 kg and speed v=5.2 m/s. When we input the numbers:
p=105*5.2=546 kg*(m/s).
So big Joe's momentum before the collision is p=546 kg*(m/s).