Answer:
58.32 N
Explanation:
Area of a circle = ![\pi](https://tex.z-dn.net/?f=%5Cpi)
![r^{2}](https://tex.z-dn.net/?f=r%5E%7B2%7D)
where r is the radius of the circle.
The cylinder has a radius of 0.02 m, its area is;
= ![\pi](https://tex.z-dn.net/?f=%5Cpi)
![r^{2}](https://tex.z-dn.net/?f=r%5E%7B2%7D)
=
x ![(0.02)^{2}](https://tex.z-dn.net/?f=%280.02%29%5E%7B2%7D)
=
x 0.0004
= 1.2571 x ![10^{-3}](https://tex.z-dn.net/?f=10%5E%7B-3%7D)
Area of the cylinder is 0.0013
.
The safety valve has a radius of 0.0075 m, its area is;
= ![\pi](https://tex.z-dn.net/?f=%5Cpi)
![r^{2}](https://tex.z-dn.net/?f=r%5E%7B2%7D)
=
x ![(0.0075)^{2}](https://tex.z-dn.net/?f=%280.0075%29%5E%7B2%7D)
=
x 5.625 x ![10^{-5}](https://tex.z-dn.net/?f=10%5E%7B-5%7D)
= 1.7679 x ![10^{-4}](https://tex.z-dn.net/?f=10%5E%7B-4%7D)
Area of the valve is 0.00018
.
From Hooke's law, the force on the safety valve can be determined by;
F = ke
= 950 x 0.0085
= 8.075 N
Minimum force,
, required can be determined by;
= ![\frac{F_{2} }{A_{2} }](https://tex.z-dn.net/?f=%5Cfrac%7BF_%7B2%7D%20%7D%7BA_%7B2%7D%20%7D)
= ![\frac{8.075}{0.00018}](https://tex.z-dn.net/?f=%5Cfrac%7B8.075%7D%7B0.00018%7D)
= ![\frac{0.0013 *8.075}{0.00018}](https://tex.z-dn.net/?f=%5Cfrac%7B0.0013%20%2A8.075%7D%7B0.00018%7D)
= 58.32
The minimum force that must be exerted on the piston is 58.32 N.