1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
algol [13]
3 years ago
15

A 1.20-m cylindrical rod of diameter 0.570 cm is connected to a power supply that maintains a constant potential difference of 1

5.0 V across its ends, while an ammeter measures the current through it. You observe that at room temperature (20.0°C) the ammeter reads 18.6 A, while at 92.0°C it reads 17.5 A. You can ignore any thermal expansion of the rod. (a) Find the resistivity at 20°C for the material of the rod. (b) Find the temperature coefficient of resistivity at 20°C for the material of the rod.
Physics
1 answer:
nasty-shy [4]3 years ago
5 0

(a) 1.72\cdot 10^{-5} \Omega m

The resistance of the rod is given by:

R=\rho \frac{L}{A} (1)

where

\rho is the material resistivity

L = 1.20 m is the length of the rod

A is the cross-sectional area

The radius of the rod is half the diameter: r=0.570 cm/2=0.285 cm=2.85\cdot 10^{-3} m, so the cross-sectional area is

A=\pi r^2=\pi (2.85\cdot 10^{-3} m)^2=2.55\cdot 10^{-5} m^2

The resistance at 20°C can be found by using Ohm's law. In fact, we know:

- The voltage at this temperature is V = 15.0 V

- The current at this temperature is I = 18.6 A

So, the resistance is

R=\frac{V}{I}=\frac{15.0 V}{18.6 A}=0.81 \Omega

And now we can re-arrange the eq.(1) to solve for the resistivity:

\rho=\frac{RA}{L}=\frac{(0.81 \Omega)(2.55\cdot 10^{-5} m^2)}{1.20 m}=1.72\cdot 10^{-5} \Omega m

(b) 8.57\cdot 10^{-4} /{\circ}C

First of all, let's find the new resistance of the wire at 92.0°C. In this case, the current is

I = 17.5 A

So the resistance is

R=\frac{V}{I}=\frac{15.0 V}{17.5 A}=0.86 \Omega

The equation that gives the change in resistance as a function of the temperature is

R(T)=R_0 (1+\alpha(T-T_0))

where

R(T)=0.86 \Omega is the resistance at the new temperature (92.0°C)

R_0=0.81 \Omega is the resistance at the original temperature (20.0°C)

\alpha is the temperature coefficient of resistivity

T=92^{\circ}C

T_0 = 20^{\circ}

Solving the formula for \alpha, we find

\alpha=\frac{\frac{R(T)}{R_0}-1}{T-T_0}=\frac{\frac{0.86 \Omega}{0.81 \Omega}-1}{92C-20C}=8.57\cdot 10^{-4} /{\circ}C

You might be interested in
Elizabeth noticed an increase of Mountain Bluebird sightings in her neighborhood. She wanted to know if there was an increase in
Nataly_w [17]

Answer:

Male Mountain Bluebirds are entirely bright blue above and duller blue-gray below, but this bird has hints of chestnut coloration on his underparts, reminiscent of Eastern and Western Bluebirds. His appearance matches descriptions of hybrids between Mountain Bluebirds and Eastern or Western Bluebirds. These mixed pairs have been recorded multiple times. Their offspring are also usually fertile, evidenced by successful nestings of hybrid adults with pure individuals.

Historical reports of mixed pairs have been most common between Mountain and Eastern Bluebirds, which are more closely related to each other than either is to Western Bluebirds. Many of these reports have come from where the ranges of Mountain and Eastern Bluebirds overlap — in the southern prairie provinces of Canada and the northern Great Plains states of the U.S. However, mixed pairs have been recorded in Nebraska, eastern Minnesota, and even southern Ontario, aided by the wanderlust of Mountain Bluebirds.

Explanation:

8 0
3 years ago
What factor is responsible for altering the speed of an electromagnetic wave? A) amplitude B) wavelength Eliminate C) type of me
Nataly [62]

The correct answer is C) type of medium. Electromagnetic waves travel faster in solids than in liquids, and faster in liquids than in gases.

3 0
3 years ago
A tree falls in a forest. How many years must pass before the 14C activity in 1.03 g of the tree's carbon drops to 1.02 decay pe
Illusion [34]

Answer:

t = 5.59x10⁴ y

Explanation:

To calculate the time for the ¹⁴C drops to 1.02 decays/h, we need to use the next equation:

A_{t} = A_{0}\cdot e^{- \lambda t}    (1)

<em>where A_{t}: is the number of decays with time, A₀: is the initial activity, λ: is the decay constant and t: is the time.</em>

To find A₀ we can use the following equation:  

A_{0} = N_{0} \lambda   (2)

<em>where N₀: is the initial number of particles of ¹⁴C in the 1.03g of the trees carbon </em>

From equation (2), the N₀ of the ¹⁴C in the trees carbon can be calculated as follows:        

N_{0} = \frac{m_{T} \cdot N_{A} \cdot abundance}{m_{^{12}C}}

<em>where m_{T}: is the tree's carbon mass, N_{A}: is the Avogadro's number and m_{^{12}C}: is the ¹²C mass.  </em>

N_{0} = \frac{1.03g \cdot 6.022\cdot 10^{23} \cdot 1.3\cdot 10^{-12}}{12} = 6.72 \cdot 10^{10} atoms ^{14}C    

Similarly, from equation (2) λ is:

\lambda = \frac{Ln(2)}{t_{1/2}}

<em>where t 1/2: is the half-life of ¹⁴C= 5700 years </em>

\lambda = \frac{Ln(2)}{5700y} = 1.22 \cdot 10^{-4} y^{-1}

So, the initial activity A₀ is:  

A_{0} = 6.72 \cdot 10^{10} \cdot 1.22 \cdot 10^{-4} = 8.20 \cdot 10^{6} decays/y    

Finally, we can calculate the time from equation (1):

t = - \frac{Ln(A_{t}/A_{0})}{\lambda} = - \frac {Ln(\frac{1.02decays \cdot 24h \cdot 365d}{1h\cdot 1d \cdot 1y \cdot 8.20 \cdot 10^{6} decays/y})}{1.22 \cdot 10^{-4} y^{-1}} = 5.59 \cdot 10^{4} y              

I hope it helps you!

4 0
3 years ago
What are the different kinds of forces?
Anon25 [30]
Gravity, friction, and air resistance are some examples.
6 0
3 years ago
Read 2 more answers
Which description best explains the distortion of color at the bottom of the leaves in the image?
Vilka [71]

Answer:

A.

Explanation:

When the light travels through the lenses and disperses it can create other colors around objects that aren't there.

6 0
4 years ago
Other questions:
  • How did world cup soccer become cool?
    5·1 answer
  • A 10.0 g block with a charge of +8.00×10-5C is placed in an electric field E = (3000iˆ - 600 ˆj)N /Cs. What are the
    12·1 answer
  • You toss a ball straight up in the air. Immediately after you let go of it, what force or forces are acting on the ball
    14·1 answer
  • PLEASE GO ANSWER MY 3 MOST RECENT QUESTION I NEED HELP!!!!!!!!!!!!!!
    6·1 answer
  • Elements have the same number of __as you move from left to right
    11·1 answer
  • A trapeze artist swings in simple harmonic motion with a period of 3.8 s.
    11·1 answer
  • Andy has two samples of liquids. Sample A has a pH of 4, and sample B has a pH of 6. What can Andy conclude about these two samp
    8·1 answer
  • Put them in order need help plz
    10·2 answers
  • Which conditions are necessary for rain to form?
    13·1 answer
  • Least count of measruing cylinder​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!