As a result, the protein molecule is 315 x 10^-9 metres long.
<h3>What does a hydrogen atom contain?</h3>
- The hydrogen atom is the most fundamental of all atoms because it just contains one proton and one electron.
- In addition to this most common isotope, the hydrogen atom can also be found in protium, deuterium, and tritium.
- Hydrogen, denoted by the letter H, has the first atomic number among the lightest elements.
<h3>How do you describe a hydrogen atom?</h3>
- There are three known hydrogen isotopes.
- Hydrogen has isotopes with masses of 1, 2, and 3, with mass 1 being the most common.
- This isotope is also referred to as protium and hydrogen in everyday language (symbol H, or 1H).
learn more about hydrogen atom here
brainly.com/question/13796082
#SPJ4
Answer:
x(t) = −39e
−0.03t + 40.
Explanation:
Let V (t) be the volume of solution (water and
nitric acid) measured in liters after t minutes. Let x(t) be the volume of nitric acid
measured in liters after t minutes, and let c(t) be the concentration (by volume) of
nitric acid in solution after t minutes.
The volume of solution V (t) doesn’t change over time since the inflow and outflow
of solution is equal. Thus V = 200 L. The concentration of nitric acid c(t) is
c(t) = x(t)
V (t)
=
x(t)
200
.
We model this problem as
dx
dt = I(t) − O(t),
where I(t) is the input rate of nitric acid and O(t) is the output rate of nitric acid,
both measured in liters of nitric acid per minute. The input rate is
I(t) = 6 Lsol.
1 min
·
20 Lnit.
100 Lsol.
=
120 Lnit.
100 min
= 1.2 Lnit./min.
The output rate is
O(t) = (6 Lsol./min)c(t) = 6 Lsol.
1 min
·
x(t) Lnit.
200 Lsol.
=
3x(t) Lnit.
100 min
= 0.03 x(t) Lnit./min.
The equation is then
dx
dt = 1.2 − 0.03x,
or
dx
dt + 0.03x = 1.2, (1)
which is a linear equation. The initial condition condition is found in the following
way:
c(0) = 0.5% = 5 Lnit.
1000 Lsol.
=
x(0) Lnit.
200 Lsol.
.
Thus x(0) = 1.
In Eq. (1) we let P(t) = 0.03 and Q(t) = 1.2. The integrating factor for Eq. (1) is
µ(t) = exp Z
P(t) dt
= exp
0.03 Z
dt
= e
0.03t
.
The solution is
x(t) = 1
µ(t)
Z
µ(t)Q(t) dt + C
= Ce−0.03t + 1.2e
−0.03t
Z
e
0.03t
dt
= Ce−0.03t +
1.2
0.03
e
−0.03t
e
0.03t
= Ce−0.03t +
1.2
0.03
= Ce−0.03t + 40.
The constant is found using x(t) = 1:
x(0) = Ce−0.03(0) + 40 = C + 40 = 1.
Thus C = −39, and the solution is
x(t) = −39e
−0.03t + 40.
Because the alkali metals are the group 1 metals, they have only 1 valence electron that they want to lose, and the halogens are the group 17 nonmetals, they want to gain 1 valence electron to become stable.
Is this the full question?
<span>Heat that flows by conduction is the transfer of thermal energy between substances in contact. For this to happen, what must occur?
A) The two systems must be the same temperature.
B) The two systems must not be touching each another.
C) One system must have higher kinetic energy than the other system.
D) The thermal energy of one system must be the same as the thermal energy of the other system.</span>
The right answer for the question that is being asked and shown above is that: "<span>b. number/timed." Reaction Rate refers to the </span> speed of reaction<span> for a reactant or product in a particular </span>reaction<span> is intuitively defined as how fast or slow a</span>re action<span> takes place.</span>