The answer is the first one
Answer:
(a) The announcer's claim is incorrect because the divers enter at a speed of 20.4 and not 25 m/s as announced
(b) it’s possible for a diver to enter the water with the velocity of 25 m/s if he has initial velocity of 14.4 m/s. The upward initial velocity can’t be physically attained
Explanation:
(a)
To find the final velocity
for an object traveling distance h taking the initial vertical component of velocity as
the kinematics equation is written as
where a is acceleration
Substituting g for a where g is gravitational force value taken as 9.81

Since the initial velocity is zero, we can solve for final velocity by substituting figures, note that 70 ft is 21.3 m for h
= 20.44275
Therefore, the divers enter with a speed of 20.4 m/s
The announcer's claim is incorrect because the divers enter at a speed of 20.4 and not 25 m/s as announced
(b)
The divers can enter water with a velocity of 25 m/s only if they have some initial velocity. Using the kinematic equation

Since we have final velocity of 25 m/s


= 14.390761 m/s
Therefore, it’s possible for a diver to enter the water with the velocity of 25 m/5 if he has initial velocity of 14.4 m/s
In conclusion, the upward initial velocity can’t be physically attained
Protons are positive,
electrons are negative,
and neutrons are neutral.
In the nucleus, there are protons and neutrons, so the charge of a nucleus is positive.
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
As we know that initially the grass hopper is at rest at the ground position
Now the acceleration is given as

distance of the legs that it stretched is given as

so we have



Part b)
time taken to reach this speed is given as



Part c)
as the grass hopper reach the maximum height its final speed would be zero
so we will have



Answer:
19.21ms-¹
Explanation:
that is the solution above