Answer:
Image result for In covalent bonds what is being shared
A covalent bond is a chemical bond that involves the sharing of electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs, and the stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding.
Explanation:
Answer:
0.767m
Explanation:
We are given that the time interval between each droplet is equal.
We are also given that the fourth drop is just dripping from the shower when the first hits the floor.
If they fall at the same time interval and we know that the distance between the shower head and floor are the same, they must therefore fall at the same velocity.
The distance between each drop has to be the same given that they fall at equal time intervals.
Let this distance be x.
We can then partition the entire height of the system into three parts (as shown in the diagram).
Hence, we can say that:
x + x + x = 2.3m
3x = 2.3m
=> x = 2.3/3 = 0.767m
Therefore, at the time the first drop hits the floor, the third drop is only 0.767 m below the shower head.
Answer: reactants to this system,...
Explanation:
The equilibrium conditions allow to find the results for the balance forces are:
When the acceleration is zero we have the equilibrium conditions for both linear and rotational motion.
∑ F = 0
∑ τ = 0
Where F are the forces and τ the torques.
The torque is the product of the force and the perpendicular distance to the point of support,
The free-body diagrams are diagrams of the forces without the details of the bodies, see attached for the free-body diagram of the system.
We write the translational equilibrium condition.
F₁ - W₁ - W₂ + F₂ = 0
We write the equation for the rotational motion, set our point of origin at scale 1, and the counterclockwise turns are positive.
F₂ 2 - W₁ 1 - W₂ 1.5 = 0
Let's calculate F₂
F₂ =
F₂ = (m g + M g 1.5)/ 2
F₂ =
F₂ = 558.6 N
We substitute in the translational equilibrium equation.
F₁ = W₁ + W₂ - F₂
F₁ = (m + M) g - F₂
F₁ = (12 +68) 9.8 - 558.6
F₁ = 225.4 N
In conclusion using the equilibrium conditions we can find the forces of the balance are:
Learn more here: brainly.com/question/12830892
Answer:
The arrow is at a height of 500 feet at time t = 2.35 seconds.
Explanation:
It is given that,
An arrow is shot vertically upward at a rate of 250 ft/s, v₀ = 250 ft/s
The projectile formula is given by :

We need to find the time(s), in seconds, the arrow is at a height of 500 ft. So,

On solving the above quadratic equation, we get the value of t as, t = 2.35 seconds
So, the arrow is at a height of 500 feet at time t = 2.35 seconds. Hence, this is the required solution.