1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlad [161]
4 years ago
8

A mysterious rocket-propelled object of mass 47.5kg is initially at rest in the middle of the horizontal, frictionless surface o

f an ice-covered lake. Then a force directed east and with magnitudeF(t)= (17.0N/s )t is applied.
How far does the object travel in the first 5.25s after the force is applied?

Physics
1 answer:
True [87]4 years ago
3 0

Explanation:

Below is an attachment containing the solution.

You might be interested in
Why would you not be able to hear a sound in space?
Sophie [7]
<span>For any sounds to reach your ear, it would need a medium (fluid, solid) to propagate.
(lol u def)</span>
6 0
3 years ago
A dockworker applies a constant horizontal force of 80.0 N to a block of ice on a smooth horizontal floor. The frictional force
Tamiku [17]

Answer:

(a) 91 kg (2 s.f.)    (b) 22 m

Explanation:

Since it is stated that a constant horizontal force is applied to the block of ice, we know that the block of ice travels with a constant acceleration and but not with a constant velocity.

(a)

                                                   s \ = \ ut \ + \ \displaystyle\frac{1}{2} at^{2} \\ \\ a \ = \ \displaystyle\frac{2(s \ - \ ut)}{t^{2}} \\ \\ a \ = \ \displaystyle\frac{2(11 \ - \ 0)}{5^{2}} \\ \\ a \ = \ \displaystyle\frac{22}{25} \\ \\ a \ = \ 0.88 \ \mathrm{m \ s^{-2}}

     Subsequently,

                                                  F \ = \ ma \\ \\ m \ = \ \displaystyle\frac{F}{a} \\ \\ m \ = \ \displaystyle\frac{80 \ \mathrm{kg \ m \ s^{-2}}}{0.88 \ \mathrm{m \ s^{-2}}} \\ \\ m \ = \ 91 \mathrm{kg} \ \ \ \ \ \ (2 \ \mathrm{s.f.})

*Note that the equations used above assume constant acceleration is being applied to the system. However, in the case of non-uniform motion, these equations will no longer be valid and in turn, calculus will be used to analyze such motions.

(b) To find the final velocity of the ice block at the end of the first 5 seconds,

                                                    v \ = \ u \ + \ at \\ \\ v \ = \ 0 \ + \ (0.88 \mathrm{m \ s^{-2}})(5 \ \mathrm{s}) \\ \\ v \ = \ 4.4 \ \mathrm{m \ s^{-1}}

     According to Newton's First Law which states objects will remain at rest

     or in uniform motion (moving at constant velocity) unless acted upon by

     an external force. Hence, the block of ice by the end of the first 5

     seconds, experiences no acceleration (a = 0) but travels with a constant

     velocity of 4.4 m \ s^{-1}.

                                                    s \ = \ ut \ + \ \displaystyle\frac{1}{2}at^{2} \\ \\ s \ = \ (4.4 \ \mathrm{m \ s^{-2}})(5 \ \mathrm{s}) \ + \ \displaystyle\frac{1}{2}(0)(5^{2}) \\ \\ s \ = \ 22 \ \mathrm{m}

      Therefore, the ice block traveled 22 m in the next 5 seconds after the

      worker stops pushing it.

4 0
3 years ago
In Example 2.12, two circus performers rehearse a trick in which a ball and a dart collide. Horatio stands on a platform 6.4 m a
pickupchik [31]

Answer:

time of collision is

t = 0.395 s

h = 5.63 m

so they will collide at height of 5.63 m from ground

Explanation:

initial speed of the ball when it is dropped down is

v_1 = 0

similarly initial speed of the object which is projected by spring is given as

v_2 = 16.2 m/s

now relative velocity of object with respect to ball

v_r = 16.2 m/s

now since we know that both are moving under gravity so their relative acceleration is ZERO and the relative distance between them is 6.4 m

d = v_r t

6.4 = 16.2 t

t = 0.395 m

Now the height attained by the object in the same time is given as

h = v_2 t - \frac{1}{2}gt^2

h = 16.2(0.395) - \frac{1}{2}(9.81).395^2

h = 5.63 m

so they will collide at height of 5.63 m from ground

4 0
3 years ago
A 15.0-kg child descends a slide 2.40 m high and reaches the bottom with a speed of 1.10 m/s .
pickupchik [31]

The thermal energy that is generated due to friction is 344J.

<h3>What is the thermal energy?</h3>

Now we know that the total mechanical energy in the system is constant. The loss in energy is given by the loss in energy.

Thus, the kinetic energy is given as;

KE = 0.5 * mv^2 =0.5 * 15.0-kg * (1.10 m/s)^2 = 9.1 J

PE = mgh = 15.0-kg * 9.8 m/s^2 *  2.40 m = 352.8 J

The thermal energy is; 352.8 J - 9.1 J = 344J

Learn more about thermal energy due to friction:brainly.com/question/7207509

#SPJ1

7 0
2 years ago
Which layer of the earth can be seen from the open hole
umka21 [38]

Answer:

the inner core

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • A deer moving with uniform velocity 10m/s is being chased by a leopard, when will it catch the deer, if it was initially 10 m be
    5·1 answer
  • On the moon, what would be the force of gravity acting on an object that has a mass of 7kg?
    15·1 answer
  • What is the most precise method for recording data points during an experiment? A. plotting the data point on an X-Y graph B. cr
    14·2 answers
  • PHYSICS
    15·1 answer
  • A catapult with a just-ejected ball flying through the air. A catapult's lever holds a cannonball. The lever is attached to a ti
    7·2 answers
  • b) Si la distancia entre el punto A y el punto B es de 650 metros aproximadamente y la estudiante tarda 15 minutos (1200 segundo
    7·1 answer
  • Give at least 4 human activities which demonstrate the involvement of inertial frame of reference​
    8·1 answer
  • A 5 kg object moving to the right at 4 m/s collides inelastically with a 5 kg object
    12·1 answer
  • The energy of a machine that is transformed into heat:
    13·1 answer
  • 1. How does the % error compare to the coded tolerance for your resistors​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!