Answer:
(a). The potential on the negative plate is 42.32 V.
(b). The equivalent capacitance of the two capacitors is 0.69 μF.
Explanation:
Given that,
Charge = 10.1 μC
Capacitor C₁ = 1.10 μF
Capacitor C₂ = 1.92 μF
Capacitor C₃ = 1.10 μF
Potential V₁ = 51.5 V
Let V₁ and V₂ be the potentials on the two plates of the capacitor.
(a). We need to calculate the potential on the negative plate of the 1.10 μF capacitor
Using formula of potential difference

Put the value into the formula


The potential on the second plate



(b). We need to calculate the equivalent capacitance of the two capacitors
Using formula of equivalent capacitance

Put the value into the formula



Hence, (a). The potential on the negative plate is 42.32 V.
(b). The equivalent capacitance of the two capacitors is 0.69 μF.
Roller coaster...
going up... building the potential energy....
SCREAM... AND SCREAM... kinetic energy upon kinetic energy being used
rinse and repeat
Answer:
A.) 4 revolution
B.) 0.2 revolution
C.) 4 seconds
D.) 2.75 m/s
Explanation:
Given that a merry-go-round a.k.a "the spinny thing" is rotating at 15 RPM, and has a radius of 1.75 m
Solution
1 revolution = 2πr
Where r = 1.75m
A. How many revolutions will it make in 3 minutes?
(2π × 1.75) / 3
10.9955 / 3
3.665 RPM
Number of revolution = 15 / 3.665
Number of revolution = 4 revolution
B. How many revolutions will it make in 10.0 seconds?
First convert 10 seconds to minutes
10/60 = 0.167 minute
(2π × 1.75) / 0.167
10.9955 / 0.167
65.973
Number of revolution = 15 / 65.973
Number of revolution = 0.2 revolution
C. How long does it take for a person to make 1 complete revolution?
15 = 1 / t
Make t the subject of formula
t = 1/15
t = 0.0667 minute
t = 4 seconds
D. What is the velocity in m/s of person standing on its edge?
Velocity in m/ s will be:
Velocity = (15 × 2pi × r) / 60
Velocity = 164.9334 / 60
Velocity = 2.75 m/s
Answer:
41.5 m/s
Explanation:
Since there are no external forces, momentum must be conserved.
Momentum P = mv.
Total momentum before the collision:

Total momentum after the collision:

solving for v:

<span>If an object is moving, the amount of kinetic energy it has directly depends upon which of the following factors?</span>
- the object's mass
- the object's velocity