1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amm1812
3 years ago
14

Consider a system of two particles: ball A with a mass m is moving to the right a speed 2v and ball B with a mass 3m is moving t

o the left at a speed v. In the time interval before the two balls collide, what is the magnitude and the direction of the velocity of the center of mass of this system?
Physics
1 answer:
arlik [135]3 years ago
3 0

Answer:

Explanation:

Answer:

Explanation:

Given that,

System of two particle

Ball A has mass

Ma = m

Ball A is moving to the right (positive x axis) with velocity of

Va = 2v •i

Ball B has a mass

Mb = 3m

Ball B is moving to left (negative x axis) with a velocity of

Vb = -v •i

Velocity of centre of mass Vcm?

Velocity of centre of mass can be calculated using

Vcm = 1/M ΣMi•Vi

Where M is sum of mass

M = M1 + M2 + M3 +...

Therefore,

Vcm=[1/(Ma + Mb)] × (Ma•Va +Mb•Vb

Rearranging for better understanding

Vcm = (Ma•Va + Mb•Vb) / ( Ma + Mb)

Vcm = (m•2v + 3m•-v) / (m + 3m)

Vcm = (2mv — 3mv) / 4m

Vcm = —mv / 4m

Vcm = —v / 4

Vcm = —¼V •i

You might be interested in
As temperature increases, ________. Group of answer choices the resistance of a conductor remains the same the resistance of a c
amm1812

Answer:

resistance of a conductor increases

Explanation:

The resistance of conductors is directly proportional to the temperature of the conductor. This implies that when the temperature of the conductor is increased, the resistance of the conductor increases likewise.

This is applied in the resistance thermometer. Resistance thermometers are useful for accurate temperature measurements at very high or very low temperatures.

6 0
3 years ago
A 19 nC charge is moved in a uniform electric field. The electric field does 5.3 μJ of work as the charge moves from point A to
Marizza181 [45]

Answer:

The potential difference between points A and B is 278.95 volts.

The potential difference between points B and C is -642.10 volts.

The potential difference between points A and C is -363.15 volts.

Explanation:

Given :

Charge of the particle, q = 19 nC = 19 x 10⁻⁹ C

Work is done to move a charge from point A to B, W₁ = 5.3 μJ

Work done to move a charge from point B to C, W₂ = -12.2 μJ

Let V₁ be the potential difference between point A and B, V₂ be the potential difference between point B and C and V₃ be the potential difference between point A and C.

The relation between work done and potential difference is:

W = qV  

V = W/q    ....(1)

Using equation (1), the potential difference between points A and B is:

V_{1}=\frac{W_{1} }{q}

Substitute the suitable values in the above equation.

V_{1} =\frac{5.3\times10^{-6} }{19\times10^{-9} }

V₁ = 278.95 V

Using equation (1), the potential difference between points B and C is:

V_{2}=\frac{W_{2} }{q}

Substitute the suitable values in the above equation.

V_{2} =\frac{-12.2\times10^{-6} }{19\times10^{-9} }

V₂ = -642.10 V

The potential difference between points A and C is:

V₃ = V₁ + V₂

V₃ = 278.95 - 642.10

V₃ = -363.15 V

8 0
3 years ago
A string with a length of 4.00 m is held under a constant tension. The string has a linear mass density of \mu=0.000600~\text{kg
yulyashka [42]

Answer:

T=245.76N

Explanation:

We know that the frequency of the nth harmonic is given by f_n=nf, where f is the fundamental harmonic. Since we have the values of two consecutive frequencies, we can do:

f_{n+1}-f_n=(n+1)f-nf=nf+f-nf=f

Which for our values means (we do not need the value of <em>n</em>, that is, which harmonics are the frequencies given):

f=f_{n+1}-f_n=480Hz-400Hz=80Hz

Now we turn to the formula for the vibration frequency of a string (for the fundamental harmonic):

f=\frac{1}{2L} \sqrt{\frac{T}{\mu}}

So the tension is:

T=\mu(2Lf)^2

Which for our values is:

T=(0.0006kg/m)(2(4m)(80Hz))^2=245.76N

6 0
3 years ago
Place least complex to most complex:
Reika [66]
Cell, tissue, organ, organ sytem, organism, population, community, ecosystem, biome. 
7 0
3 years ago
Which of the following is true about Viscosity of liquids:
White raven [17]
Viscosity of liquids is essentially the 'thickness' of the liquid. For instance, honey and water have different viscosities. Honey has a higher one and therefore, liquids with high viscosity do not flow as well as liquids with low viscosity (water).
4 0
3 years ago
Read 2 more answers
Other questions:
  • The average kinetic energy of water molecules is greatest in
    9·1 answer
  • A-delta fibers : A) are small, myelinated fibers. B) transmit pain signals at a slower rate than C-fibers. C) typically transmit
    7·1 answer
  • the coefficient of static friction between a 40 kg picnic table and the ground below is .43. what is the greatest horizontal for
    14·2 answers
  • A coin is tossed upward with an initial velocity of 32 feet per second from a height of 16 feet above the ground. The equation g
    11·1 answer
  • What is this feature?
    10·1 answer
  • Can someone please answer how to convert mass into weight?
    6·1 answer
  • A charge of +3.5 nC and a charge of +5.0 nC are separated by 40 cm. Find the equilibrium position for a -6.0 nC charge.
    10·2 answers
  • Someone please help me!!
    5·1 answer
  • 2. Determine the units of the quantity described by each of the following
    9·1 answer
  • What do waves transfer
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!