The first runner because it is very clear that accelarition depends on the time and we know that the time in this case is pretty simple
Answer:
he fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Explanation:
Let's pose the solution of this problem, to be able to analyze the firm affirmations.
When the person is falling, the weight acts on them all the time, initially the rope has no force, but at the moment it begins to lash it exerts a force towards the top that is proportional to the lengthening of the rope.
The equation for this part is
Fe - W = m a
k x - mg = m a
As the axis of rotation is located at the top where they jump, there is a torque.
What is it
Fe y - W y = I α
angular and linear acceleration are related
a = α r
Fe y - W y = I a / r
In the fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
The power dissipated by each be found using any of the equation relating power currents voltage and resistance
Answer:
1.It helps in trade and business.
2. It helps to perform scientific calculations.
A) <u>Weight = mass × acceleration (due to gravity) </u>
= 60×9.8
= 588 N
<u>B) Potential energy = mass x gravity x change in height
</u>
1,000 = 60.0 x 9.8 x h
h = 1.7 m
<u>C) Kinetic energyF = potential energyI
</u>
KEF = 1/2mv2
PEI = mgh = 1,000 J
1/2mv2 = 1,000
1/2(60.0)v2 = 1,000
v2 = 33.33
v = 5.77 m/s