Answer:Expression given below
Explanation:
Given mass of spring
Compression in the spring
Let the spring constant be K
Using Energy conservation
potential energy stored in spring =Kinetic energy of Block


now conserving momentum


where
is the final velocity
Answer:
Telescope
Explanation:
Telescope is usually defined as an optical instrument that is commonly used to observe the objects in a magnified way that are located at a large distance from earth. These telescopes are comprised of lenses and curved mirrors that are needed to be arranged in a proper way in order to have a prominent look. It is commonly used by the astronomers.
This was first constructed by Hans Lippershey in the year 1608.
Answer:
For vector u, x component = 10.558 and y component =12.808
unit vector = 0.636 i+ 0.7716 j
For vector v, x component = 23.6316 and y component = -6.464
unit vector = 0.9645 i-0.2638 j
Explanation:
Let the vector u has magnitude 16.6
u makes an angle of 50.5° from x axis
So 
Vertical component 
So vector u will be u = 10.558 i+12.808 j
Unit vector 
Now in second case let vector v has a magnitude of 24.5
Making an angle with -15.3° from x axis
So horizontal component 
Vertical component 
So vector v will be 23.6316 i - 6.464 j
Unit vector of v 
Answer:
The RMS voltage across the resistor = 28 V
Explanation:
Capacitor: A capacitor is an electrical device that has the ability to store electrical charges in an electrical circuit. It is expressed in Farad (F)
Resistor: A resistor is an electrical device that oppose the flow of electric current in a circuit. It is expressed in ohms (Ω)
RMS Voltage : RMS voltage value of an alternating voltage is defined as that value of steady voltage which would dissipate heat at the same rate in a given resistance
Since the it is a series circuit, the total voltage is divided across the resistance and the capacitor.
Vt = V₁ + V₂...........................Equation 1
Where Vt = total Rms voltage = 120 V , V₁ = Rms voltage across the Capacitor = 92 V, V₂ = Rms voltage across the resistor.
Making V₂ the subject of the equation in equation 1 above,
V₂ = Vt - V₁ = 120 - 92
V₂ = 28 V.
The RMS voltage across the resistor = 28 V
Because of the rule of mask.