Answer:
The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.
Explanation:
Given that,
The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.
A ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80 degrees.
We need to find the angular separation between the refracted red and refracted blue beams while they are in the glass.
Using Snell's law for red light as :

Again using Snell's law for blue light as :

The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.
Hi am not sure but have searched on online
Answer:
Option C
Explanation:
v= u + at
20 = 5 + a(5)
15= a(5)
a= 3 m/s²
Force = mass × acceleration
= 10 × 3
= 30 N
Let, 1st force = a
2nd force = b
A.T.Q,
a+b = 10
a-b = 6
Calculate for a & b, you'll get a=8 & b= 2
After increasing by 3, it'll be a = 8+3 = 11 & b=2+3 = 5
Resultant force at 90 degree angle = 11+5 = 16 Newtons
Answer:
88.34 N directed towards the center of the circle
Explanation:
Applying,
F = mv²/r................... Equation 1
F = Force needed to keep the mass in a circle, m = mass of the mass, v = velocity of the mass, r = radius of the circle.
But,
v = 2πr/t................... Equation 2
Where t = time, π = pie
Substitute equation 2 into equation 1
F = m(2πr/t)²/r
F = 4π²r²m/t²r
F = 4π²rm/t²............. Equation 3
From the question,
Given: m = 0.8 kg, r = 0.7 m, t = 0.5 s
Constant: π = 3.14
Substitute these values into equation 3
F = 4(3.14²)(0.7)(0.8)/0.5²
F = 88.34 N directed towards the center of the circle