Answer:
a) 3.39 × 10²³ atoms
b) 6.04 × 10⁻²¹ J
c) 1349.35 m/s
Explanation:
Given:
Diameter of the balloon, d = 29.6 cm = 0.296 m
Temperature, T = 19.0° C = 19 + 273 = 292 K
Pressure, P = 1.00 atm = 1.013 × 10⁵ Pa
Volume of the balloon =
or
Volume of the balloon =
or
Volume of the balloon, V = 0.0135 m³
Now,
From the relation,
PV = nRT
where,
n is the number of moles
R is the ideal gas constant = 8.314 kg⋅m²/s²⋅K⋅mol
on substituting the respective values, we get
1.013 × 10⁵ × 0.0135 = n × 8.314 × 292
or
n = 0.563
1 mol = 6.022 × 10²³ atoms
Thus,
0.563 moles will have = 0.563 × 6.022 × 10²³ atoms = 3.39 × 10²³ atoms
b) Average kinetic energy =
where,
Boltzmann constant,
Average kinetic energy =
or
Average kinetic energy = 6.04 × 10⁻²¹ J
c) rms speed =
where, m is the molar mass of the Helium = 0.004 Kg
or
rms speed =
or
rms speed = 1349.35 m/s
Answer:
te puedo ayudar pero corazón y estrella
y ando buscando novia por si quieres ser mia
Answer:
I guess sound wave I s gonna be d right answer
Explanation:
cos sound doesnt has weight and occupies space
Answer:
Before: 0 m/s
After: -4 m/s
Explanation:
Before: Since you and your beau started at rest, your beau initial velocity is 0 m/s.
After: Since we have to conserve momentum,
momentum before push = momentum after push.
The momentum before push = 0 (since you and your beau are at rest)
momentum after push = m₁v₁ + m₂v₂ were m₁ = your mass = 60 kg, v₁ = your velocity after push = 3 m/s, m₂ = beau's mass = 45 kg and v₂ = beau's velocity.
So, m₁v₁ + m₂v₂ = 0
m₁v₁ = -m₂v₂
v₂ = -m₁v₁/m₂ = -60 kg × 3 m/s ÷ 45 kg = -4 m/s
So beau moves with a velocity of 4 m/s in the opposite direction
The forces in some car crashes are greater than others; therefore, the body can be more severely injured by greater and more powerful forces. I hope this helped! :^)