Answer:
Temperature at the bottom will be 19.18°C
Explanation:
We have given height h = 807 m
Temperature at the top 
Specific heat of water c = 4200 
From energy conservation
Kinetic energy at the bottom = potential energy at the top
So 

So temperature at the bottom = 17.3+1.88 = 19.18°C
1.47x10^5 Joules
The gravitational potential energy will be the mass of the object, multiplied by the height upon which it can drop, multiplied by the local gravitational acceleration. And since it started at the top of a 60.0 meter hill, halfway will be at 30.0 meters. So
500 kg * 30.0 m * 9.8 m/s^2 = 147000 kg*m^2/s^ = 147000 Joules.
Using scientific notation and 3 significant figures gives 1.47x10^5 Joules.
As it was explained in the Introductory Article on the Electromagnetic Spectrum, electromagnetic radiation can be described as a stream of photons, each traveling in a wave-like pattern, carrying energy and moving at the speed of light. In that section, it was pointed out that the only difference between radio waves, visible light and gamma rays is the energy of the photons. Radio waves have photons with the lowest energies. Microwaves have a little more energy than radio waves. Infrared has still more, followed by visible, ultraviolet, X-rays and gamma rays.
That should be able to help answer your question :)