The answer is B. One plate slides past another.
The San Andreas Fault in California and the Alpine Fault in New Zealand are examples of transform boundaries.
Hope this helps! :)
Force acting during collision is internal so momentum is conserve
so (initial momentum = final momentum) in both directions
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1150 kg and was approaching at 5.00 m/s due south. The second car has a mass of 750 kg and was approaching at 25.0 m/s due west.
Let Vx is and Vy are final velocities of car in +x and +y direction respectively.
initial momentum in +ve x (east) direction = final momentum in +ve x direction (east)
- 750*25 + 1150*0 = (750+1150)
Vx
initial momentum in +ve y (north) direction = final momentum in +ve y direction (north)
750*0 - 1150*5 = (750+1150)
Vy
from here you can calculate Vx and Vy
so final velocity V is
<span>V=<span>(√</span><span>V2x</span>+<span>V2y</span>)
</span>
and angle make from +ve x axis is
<span>θ=<span>tan<span>−1</span></span>(<span><span>Vy</span><span>Vx</span></span>)
</span><span>
kinetic energy loss in the collision = final KE - initial KE</span>
Answer:
147.456077993 Hz
Explanation:
= Frequency of the sonar = 22 kHz
= Velocity of the whale = 4.95 m/s
v = Speed of sound in water = 1482 m/s
The difference in frequency is given by

The difference in frequency is 147.456077993 Hz
Answer:
1.5m
Explanation:
Speed of waves is given as the product of the wavelength and frequency. Sometimes when frequency is not given but the period is given, we get the frequency as the reciprocal of the period. The speed of waves is given in m/s, wavelength in m while frequency in Hz.
Speed, s= fw and making w the subject of formula,

Substituting 300, 000, 000 m/s for s and 200, 000, 000 for f then we obtain that
