Answer:
Explanation:
An industrial system consists of inputs, processes and outputs. The inputs are the raw materials, labor and costs of land,transport, power and other infrastructure. The processes include a wide range of activities that convert the raw material into finished products.
Answer: forces acting on an object being thrown into the air is gravity and possibly air resistance
Explanation:
True, also fizzing and heat being released
Answer:
a. 37.7 kgm/s b. 0.94 m/s c. -528.85 J
Explanation:
a. The initial momentum of block 1 of m₁ = 1.30 kg with speed v₁ = 29.0 m/s is p₁ = m₁v₁ = 1.30 kg × 29.0 m/s = 37.7 kgm/s
The initial momentum of block 2 of m₁ = 39.0 kg with speed v₂ = 0 m/s since it is initially at rest is p₁ = m₁v₁ = 39.0 kg × 0 m/s = 0 kgm/s
So, the magnitude of the total initial momentum of the two-block system = (37.7 + 0) kgm/s = 37.7 kgm/s
b. Since the blocks stick together after the collision, their final momentum is p₂ = (m₁ + m₂)v where v is the final speed of the two-block system.
p₂ = (1.3 + 39.0)v = 40.3v
From the principle of conservation of momentum,
p₁ = p₂
37.7 kgm/s = 40.3v
v = 37.7/40.3 = 0.94 m/s
So the final velocity of the two-block system is 0.94 m/s
c. The change in kinetic energy of the two-block system is ΔK = K₂ - K₁ where K₂ = final kinetic energy of the two-block system = 1/2(m₁ + m₂)v² and K₁ = final kinetic energy of the two-block system = 1/2m₁v₁²
So, ΔK = K₂ - K₁ = 1/2(m₁ + m₂)v² - 1/2m₁v₁² = 1/2(1.3 + 39.0) × 0.94² - 1/2 × 1.3 × 29.0² = 17.805 J - 546.65 J = -528.845 J ≅ -528.85 J
Answer: 0.258 N
Explanation:
As the density of the object is much less than the density of water, it’s clear that the buoyant force, is greater than the weight of the object, which means that in normal conditions, it would float in water.
So, in order to get the ball submerged in water, we need to add a downward force, that add to the weight, in order to compensate the buoyant force, as follows:
F = Fb – Fg
Fb= δH20* 4/3*π*(d/2)³ * g
Fg = δb* 4/3*π*(d/2)³ *g
F= (δH20- δb) * 4/3*π*(d/2)³*g
Replacing by the values of the densities, and the ball diameter, we finally get:
F= 0.258 N