It will take 5.2 years to decay.
The half life of cobalt-60 is 5.2 years. The half life is the time taken for the mass of the substance to decrease by a half.
here, the amount of remaining substance is 50%,
so,
n. log (0.5) = log (0.5)
n = 1
So it would take 1 half lives to decay this much, which is 1 x 5.2 which is 5.2 years.
what do you mean by radioactive decay ?
The process through which an unstable atomic nucleus loses energy via radiation is known as radioactive decay, also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration. A material that has unstable nuclei is considered as radioactive.
Learn more about decay here:-
brainly.com/question/13853996
#SPJ1
Answer:
40.79
Explanation:
an ounce is equal to approximately 28.3 grams.
if you have 4 ounces then it would be equal to about 113.4 grams. then you would divide that by 2.78 which will equal about 40.8
Answer:
6.05g
Explanation:
The reaction is given as;
Ethane + oxygen --> Carbon dioxide + water
2C2H6 + 7O2 --> 4CO2 + 6H2O
From the reaction above;
2 mol of ethane reacts with 7 mol of oxygen.
To proceed, we have to obtain the limiting reagent,
2,71g of ethane;
Number of moles = Mass / molar mass = 2.71 / 30 = 0.0903 mol
3.8g of oxygen;
Number of moles = Mass / molar mass = 3.8 / 16 = 0.2375 mol
If 0.0903 moles of ethane was used, it would require;
2 = 7
0.0903 = x
x = 0.31605 mol of oxygen needed
This means that oxygen is our limiting reagent.
From the reaction,
7 mol of oxygen yields 4 mol of carbon dioxide
0.2375 yields x?
7 = 4
0.2375 = x
x = 0.1357
Mass = Number of moles * Molar mass = 0.1357 * 44 = 6.05g
Answer:
light energy
Explanation:
Plants use the energy from the sun to photosynthesize and make food
hope this helps :)
Answer:
Composition of the mixture:
%
%
Composition of the vapor mixture:
%
%
Explanation:
If the ideal solution model is assumed, and the vapor phase is modeled as an ideal gas, the vapor pressure of a binary mixture with and molar fractions can be calculated as:
Where and are the vapor pressures of the pure compounds. A substance boils when its vapor pressure is equal to the pressure under it is; so it boils when . When the pressure is 0.60 atm, the vapor pressure has to be the same if the mixture is boiling, so:
With the same assumptions, the vapor mixture may obey to the equation:
, where P is the total pressure and y is the fraction in the vapor phase, so:
%
The fractions of B can be calculated according to the fact that the sum of the molar fractions is equal to 1.