When 100 photons of light pass through a sample and 64 photons are detected after the passage of light, the number of photons transmitted through the sample is 64.
This is based on the methods of calculating the absorbance of light, which is depicted as the higher the amount of light transmission, the lower the amount of light absorbed.
Thus, when 64 photons of light in 100 photons are detected, 64 photons are transmitted, and therefore, the number of photons absorbed is 36.
Hence, hypothetically, if 100 photons of light are transmitted, 0 photons of light will be absorbed.
Therefore, in this case, it is concluded that the correct answer is 64 photos.
Learn more here: brainly.com/question/20678715
Balance the chemical equation for the chemical reaction.
Convert the given information into moles.
Use stoichiometry for each individual reactant to find the mass of product produced.
The reactant that produces a lesser amount of product is the limiting reagent.
The reactant that produces a larger amount of product is the excess reagent.
To find the amount of remaining excess reactant, subtract the mass of excess reagent consumed from the total mass of excess reagent given.
Heat; rather, or change of the molecules to make them move faster
Answer:
m = 0.531 molal
Explanation:
∴ m fructose = 3.35 g
∴ V water = 35.0 mL
∴ ρ H2O = 1 g/mL
- molality = moles solute / Kg solvent
∴ Mw fructose = 180.16 g/mol
⇒ moles fructose = 3.35 g * ( mol / 180.16 g) = 0.0186 mol fructose
⇒ m H2O = 35.0 mL * ( 1 g/mL ) * ( Kg/1000g) = 0.035 Kg H2O
⇒ molality (m) = 0.0186 mol fructose / 0.035 Kg H2O
⇒ m = 0.531 molal
If a biodegradable plastic or bioplastic ends up in a landfill site it will never decompose. In landfill sites waste is essentially mummified, in a complete absence of light and oxygen. Food that has ended up in landfill will not biodegrade, so there is no hope for biodegradable plastics or even bioplastics.So it is bad.