The correct answer is base
Answer:
they are equal
Explanation:
the Law of Conservation of Mass states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change
Answer:
chemical and electrical ( and sometimes nucelar)
Explanation:
Answer = B = Neutrons and Mass Number
Isotopes are defined as those atoms which have same atomic number but different atomic masses.
Atomic mass is basically the number of protons and neutrons present in an atom.
Atomic number is the number of protons present in an atom.
So, in isotopes the number of protons are same but the number of neutrons vary due to which atomic masses also vary.
In given three isotopes, all have same number of protons but different number of neutrons.
i.e.
H-1 = 1 P + 0 N = 1 u (Proton)
H-2 = 1 P + 1 N = 2 u (Deuterium)
H-3 = 1 P + 2 N = 3 u (Tritium)
Hence, it is clear that the number after H shows a change in number of neutrons and mass number.
There are 0.566 moles of carbonate in sodium carbonate.
<h3>CALCULATE MOLES:</h3>
- The number of moles of carbonate (CO3) in sodium carbonate (Na2CO3) can be calculated by dividing the mass of carbonate in the compound by the molar mass of the compound.
- no. of moles of CO3 = mass of CO3 ÷ molar mass of Na2CO3
- Molar mass of Na2CO3 = 23(2) + 12 + 16(3)
- = 46 + 12 + 48 = 106g/mol
- mass of CO3 = 12 + 48 = 60g
- no. of moles of CO3 = 60/106
- no. of moles of CO3 = 0.566mol
- Therefore, there are 0.566 moles of carbonate in sodium carbonate.
Learn more about number of moles at: brainly.com/question/1542846