Answer:
location of battery in this diagram is at A and location of switch is at B.
Answer:
t = 0.657 s
Explanation:
First, let's use the appropiate equations to solve this:
V = √T/u
This expression gives us a relation between speed of a disturbance and the properties of the material, in this case, the rope.
Where:
V: Speed of the disturbance
T: Tension of the rope
u: linear density of the rope.
The density of the rope can be calculated using the following expression:
u = M/L
Where:
M: mass of the rope
L: Length of the rope.
We already have the mass and length, which is the distance of the rope with the supports. Replacing the data we have:
u = 2.31 / 10.4 = 0.222 kg/m
Now, replacing in the first equation:
V = √55.7/0.222 = √250.9
V = 15.84 m/s
Finally the time can be calculated with the following expression:
V = L/t ----> t = L/V
Replacing:
t = 10.4 / 15.84
t = 0.657 s
Answer:
Given
acceleration (a) =1.5ms2
Force(F) =2100N
R. t. c mass (m) =?
Form
F=ma(divided by m both sides)
m=F/a
m=2100/105
m=1400kg
mass of car =1400kg
Answer:
Explanation:
The equation for Power is
P = Work/time to do work and the equation for work is
Work = FΔx
We first need to find the amount of work done, then we can find the power it took to do that work.
W = 2000(9.8)(28) so
W = 550,000 N*m
Now we fill that into the power equation:
gives us
P = 18000 Watts. But we need kW, so we divide by 1000 to get
P = 18 kW of power.
Answer: Methane
Explanation: I just took the AP€X quiz and Methane was the correct answer!