1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vitek1552 [10]
3 years ago
8

You are driving down the highway late one night at 20 m/s when a deer steps onto the road 35m in front of you. Your reaction tim

e before stepping on the brakes is 0.50s, and the maximum deceleration of your car is 10m/s^2. How much distance is between you and the deer when you come to a stop?Using the information given above and the value for distance that you found above, determine the time required for you to stop once you press the brakes.
Physics
1 answer:
8090 [49]3 years ago
6 0

Answer:

- Distance between car and the deer when the car stopped = 20 m

- The time required for you to stop once you press the brakes = less than 5 s in order not to hit the deer.

Explanation:

Using the equations of motion,

In the 0.5 s reaction time, we need to first calculate how far he has travelled in that time.

a = 0 m/s² (Since the car is travelling at constant velocity)

x = ?

Initial velocity = u = 20 m/s

x = ut + at²/2

x = 20×0.5 + 0 = 10 m

From that moment,

a = - 10 m/s²

u = initial velocity at the start of the deceleration = 10 m/s

v = final velocity = 0 m/s

x = ?

v² = u² + 2ax

0² = 10² + 2(-10)(x)

20x = 100

x = 5 m

Total distance travelled from when the deer stepped onto the road = 10 + 5 = 15 m

Distance between car and the deer when the car stopped = 35 - 15 = 20 m

b) To determine the time required to stop once you step on the brakes

u = 10 m/s

t = ?

v = 0 m/s²

x = distance from when the brake was stepped on to the deer = 35 - 10 = 25 m

x = (u + v)t/2

25 = (10 + 0)t/2

10t = 50

t = 5 s

Meaning the time required to stop once you step on the brakes is less than 5s.

You might be interested in
A pencil rolls horizontally of a 1 meter high desk and lands .25 meters from the base of the desk. How fast was the pencil rolli
vovikov84 [41]

Answer: 0.55 m/s

Explanation:

This situation is related to projectile motion (also called parabolic motion), where the main equations are as follows:

x=V_{o} cos\theta t (1)

y=y_{o}+Vo sin \theta t + \frac{g}{2}t^{2} (2)

Where:

x=0.25 m is the horizontal displacement of the pencil

V_{o} is the pencil's initial velocity

\theta=0\° since we are told the pencil rolls <u>horizontally</u> before falling

t is the time since the pencil falls until it hits the ground

y_{o}=1 m  is the initial height of the pencil

y=0  is the final height of the pencil (when it finally hits the ground)

g=-9.8m/s^{2}  is the acceleration due gravity, always acting vertically downwards

Begining with (1):

x=V_{o} cos(0\°) t (3)

x=V_{o}t (4)

Finding t from (2):

0=1 m+ \frac{-9.8m/s^{2}}{2}t^{2} (5)

t=\sqrt{\frac{-2y_{o}}{g}} (6)

Substituting (6) in (4):

x=V_{o}\sqrt{\frac{-2y_{o}}{g}} (7)

Isolating V_{o}:

V_{o}=\frac{x}{\sqrt{\frac{-2y_{o}}{g}}} (8)

V_{o}=\frac{0.25 m}{\sqrt{\frac{-2(1 m)}{-9.8m/s^{2}}}} (9)

Finally:

V_{o}=0.55 m/s

4 0
3 years ago
Block 1, of mass m₁ = 1.30 kg , moves along a frictionless air track with speed v₁ = 29.0 m/s. It collides with block 2, of mass
Alecsey [184]

Answer:

a. 37.7 kgm/s b. 0.94 m/s c. -528.85 J

Explanation:

a. The initial momentum of block 1 of m₁ = 1.30 kg with speed v₁ = 29.0 m/s is p₁ = m₁v₁ = 1.30 kg × 29.0 m/s = 37.7 kgm/s

The initial momentum of block 2 of m₁ = 39.0 kg with speed v₂ = 0 m/s since it is initially at rest is p₁ = m₁v₁ = 39.0 kg × 0 m/s = 0 kgm/s

So, the magnitude of the total initial momentum of the two-block system = (37.7 + 0) kgm/s = 37.7 kgm/s

b. Since the blocks stick together after the collision, their final momentum is p₂ = (m₁ + m₂)v where v is the final speed of the two-block system.

p₂ = (1.3 + 39.0)v = 40.3v

From the principle of conservation of momentum,

p₁ = p₂

37.7 kgm/s = 40.3v

v = 37.7/40.3 = 0.94 m/s

So the final velocity of the two-block system is 0.94 m/s

c. The change in kinetic energy of the two-block system is ΔK = K₂ - K₁ where K₂ = final kinetic energy of the two-block system = 1/2(m₁ + m₂)v² and K₁ = final kinetic energy of the two-block system = 1/2m₁v₁²

So, ΔK = K₂ - K₁ = 1/2(m₁ + m₂)v² - 1/2m₁v₁² = 1/2(1.3 + 39.0) × 0.94² - 1/2 × 1.3 × 29.0² = 17.805 J - 546.65 J = -528.845 J ≅ -528.85 J

7 0
3 years ago
A 10 kg block is attached to a light cord that is wrapped around the pulley of an electric motor, as shown above. If the motor r
Anika [276]

Answer:

156.8 Watts

Explanation:

From the question given above, the following data were obtained:

Mass (m) = 10 kg

Height (h) = 8 m

Time (t) = 5 s

Power (P) =?

Next, we shall determine the energy used by the motor to raise the block. This can be obtained as follow:

Mass (m) = 10 kg

Height (h) = 8 m

Acceleration due to gravity (g) = 9.8 m/s²

Energy (E) =?

E = mgh

E = 10 × 9. 8 × 8

E = 784 J

Finally, we shall determine the power output of the motor. This can be obtained as illustrated below:

Time (t) = 5 s

Energy (E) = 784 J

Power (P) =?

P = E/t

P = 784 / 5

P = 156.8 Watts

Therefore, the power output of the motor is 156.8 Watts

7 0
3 years ago
A 1500 kg car traveling at 15.0 m/s to the south collides with a 4500 kg truck that is at rest at a stopligt. The car comes to a
Burka [1]

Answer:

5 m/s, moving to the South.

Explanation:

Parameters given:

Mass of car, m = 1500 kg

Initial velocity of car, u = 15 m/s

Mass of truck, M = 4500 kg

Initial velocity of truck, v = 0 m/s (Truck is at rest)

Final velocity of car, U = 0 m/s (Car comes to a stop)

Final velocity of truck = V

Because the collision is elastic, we can apply the principle of conservation of momentum, we have that:

Total initial momentum = Total final momentum

m*u + M*U = m*v + M*V

(1500 * 15) + (4500 * 0) = (1500 * 0) + (4500 * V)

22500 + 0 = 0 + 00V

=> V = 22500/4500

V = 5 m/s

The velocity carries a positive sign, hence, it's moving in the same direction as the car was moving initially.

That is, it's moving to the South.

8 0
3 years ago
Read 2 more answers
Which statement describes a digital signal?
hoa [83]

Answer:

"It is made of numbers" describes the digital signal.

Explanation:

The digital signal are the electrical signal which is translated into the pattern of bits. The digital signal are always discrete value in every sampling point. The conversion of the programming into the stream or the binary sequence like 0s and 1s. The digital signals never gets weaken over distance but the analog signal gets weakened or impair at distance. The digital signals are consists of one or two value, Timing graph are square waves.

4 0
3 years ago
Read 2 more answers
Other questions:
  • A “constant” is a parameter that stays the same regardless of the variables. One parameter of the cart that is held constant is
    12·2 answers
  • In a follow-up experiment, two identical gurneys are placed side-by-side on a ramp with their wheels locked to eliminate spinnin
    14·1 answer
  • Because angular momentum is conserved, an ice-skater who throws her arms out will
    15·1 answer
  • Simone created a chart to summarize the energy transformations that take place when energy from the wind is used to generate ele
    11·2 answers
  • The law of conservation of energy states that
    14·1 answer
  • Why is a decrease in Earth’s ozone harmful to life?
    6·1 answer
  • As a general rule of thumb, how long should you wait between eating and
    6·1 answer
  • 2. A 4.0 kg magnetic toy car traveling at 3.0 m/s east collides and sticks to a 5.0 kg toy magnetic car also traveling at 2.0 m/
    15·1 answer
  • Good Luck! And Happy Weekend!
    5·1 answer
  • Using appropriate technology, you determine that Earth's magnetic field at your location has a magnitude of 5.88 10-5 T and is d
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!