The distance of the Image will be -33.75 cm
A concave mirror has an inward-curving reflecting surface that faces away from the light source. Unlike convex mirrors, a concave mirror's image forms a variety of images based on the object's proximity to the mirror.
Given that, an object placed 27 cm from a concave mirror having the focal length of 15 cm
We have to find distance of the Image
Using Mirror Formula:
1/f = 1/v + 1/u
Where,
f = focal length
v = Image distance from the mirror
u = object distance from the mirror (concave)
Substitute the known values in the above formula to find the value of 'v' i.e. from the mirror.
1/(-15) = 1/v + 1/(-27)
1/(-15) = 1/v - (1/27)
1/v = -0.029
v = -33.75 cm
Therefore the distance of the Image will be -33.75 cm
Learn more about concave mirror here:
brainly.com/question/9816370
#SPJ10
Relation between electrostatic force and distance is inverse square i.e
1
Fα ----
r^2
Hence if r is tripled, new electrostatic force will be 1/9 times old force.
Answer:
Y: transparent objects i think
If the sun would become cooler having constant size, it would emit less ultraviolet light and less visible light than what it currently gives to earth. Hope this answers the question. Have a nice day. Thank you for posting here.