The answer for the following problem is explained below.
Therefore the volume charge density of a substance (ρ) is 0.04 ×
C.
Explanation:
Given:
radius (r) =2.1 cm = 2.1 ×
m
height (h) =8.8 cm = 8.8 ×
m
total charge (q) =6.1×
C
To solve:
volume charge density (ρ)
We know;
<u> ρ =q ÷ v</u>
volume of cylinder = π ×r × r × h
volume of cylinder =3.14 × 2.1 × 2.1 ×
× 8.8 ×
volume of cylinder (v) = 122.23 ×
<u> ρ =q ÷ v</u>
ρ = 6.1×
÷ 122.23 ×
<u>ρ = 0.04 × </u>
<u> C</u>
Therefore the volume charge density of a substance (ρ) is 0.04 ×
C.
Answer:
a.If we increase the wind velocity, the maximum vertical dispersal height will decrease, while the rate of diffusion will increase
b.If we increase the humidity, the maximum vertical dispersal height will increase after 24 hours.
c.If we increase the lapse rate, the maximum vertical dispersal height of the pollutants will increase
Explanation:
a.If we increase the wind velocity, the maximum vertical dispersal height will decrease, while the rate of diffusion will increase
b.If we increase the humidity, the maximum vertical dispersal height will increase after 24 hours.
c.If we increase the lapse rate, the maximum vertical dispersal height of the pollutants will increase
You use energy from your body and press the pedals on the bike that has chains and the chains are connected to a circular ish shape and is also connected to the wheel and it spins
From among the choices provided, the better choice is the upper-case letter '<em>T </em>'. That symbol can conveniently be used to represent the words "true" or "truth", which is exactly the reason that it is the better choice for a response, since the complicated statement at the beginning of the question is completely true in its every detail, nuance, jot and tittle.
Answer:
3. Is 180◦ out of phase with the original wave at the end.
Explanation:
Here when wave is reflected by the rigid boundary then due to the rigidly bounded particles at the end or boundary they have tendency not to move and remains fixed at their position.
Due to this fixed position we can say when wave reach at that end the particles will not move and they apply equal and opposite force at the particles of string
Due to this the reflected wave is transferred back into the string in opposite phase with respect to the initial wave
so here correct answer will be
3. Is 180◦ out of phase with the original wave at the end.