Answer:
4.1 eV
Explanation:
Kinetic energy, K = 0.8 eV = 0.8 x 1.6 x 10^-19 J = 1.28 x 10^-19 J
wavelength, λ = 253.5 nm = 253.5 x 10^-9 m
According to the Einstein energy equation

Where, E be the energy incident, Wo is the work function and K is the kinetic energy.
h = 6.634 x 10^-34 Js
c = 3 x 10^8 m/s

So, the work function, Wo = E - K
Wo = 7.85 x 10^-19 - 1.28 x 10^-19
Wo = 6.57 x 10^-19 J
Wo = 4.1 eV
Thus, the work function of the metal is 4.1 eV.
Our solar system consists of the sun and the 9 planets and their moons.
The galaxy is outside our solar system.
True I believe..................
Answer
is: V<span>an't
Hoff factor (i) for this solution is 1,81.
Change in freezing point from pure solvent to
solution: ΔT =i · Kf · b.
Kf - molal freezing-point depression constant for water is 1,86°C/m.
b - molality, moles of solute per
kilogram of solvent.
</span><span>b = 0,89 m.
ΔT = 3°C = 3 K.
i = </span>3°C ÷ (1,86 °C/m · 0,89 m).
i = 1,81.
The answer that is being described above is the ASTEROIDS. The one that we see floating between Mars and Jupiter is what we call the Asteroid Belt. The asteroid belt comprises of different rocky bodies and they also orbit within the solar system. Hope this helps.