<span>The force of static friction F equals the coefficient of friction u times the normal force N the object exerts on the surface: F = uN. N is the centripetal force of the wall on the people; N = ma_N, where m is the mass of the people and a_N is the centripetal acceleration.
The people will not slip down if F is greater than the force of gravitation: F = uma_N > mg, or u > g/a_N.
a_N is the velocity v of the people squared divided by the radius of the room r: a_N = v^2/r.
The circumference of the room is 2 pi r = 28.3 m. So v = 28.3 * 0.8 m/sec = 22.6 m/sec.
So a_N = 114 m/sec^2.
g = 9.81 m/sec^2, so u must be at least 9.81/114 = 0.086.</span>
Correct question:
A solenoid of length 0.35 m and diameter 0.040 m carries a current of 5.0 A through its windings. If the magnetic field in the center of the solenoid is 2.8 x 10⁻² T, what is the number of turns per meter for this solenoid?
Answer:
the number of turns per meter for the solenoid is 4.5 x 10³ turns/m.
Explanation:
Given;
length of solenoid, L= 0.35 m
diameter of the solenoid, d = 0.04 m
current through the solenoid, I = 5.0 A
magnetic field in the center of the solenoid, 2.8 x 10⁻² T
The number of turns per meter for the solenoid is calculated as follows;

Therefore, the number of turns per meter for the solenoid is 4.5 x 10³ turns/m.
Answer: Partial pressure of nitrogen and xenon are 288mmHg and 548 mmHg respectively.
Explanation:
The partial pressure of a gas is given by Raoult's law, which is:

where,
= partial pressure of substance A
= total pressure
= mole fraction of substance A
We are given:


Mole fraction of a substance is given by:

And,

Mole fraction of nitrogen is given as:

Molar mass of
= 28 g/mol
Molar mass of
= g/mol
Putting values in above equation, we get:


To calculate the mole fraction of xenon, we use the equation:



Thus partial pressure of nitrogen and xenon are 288mmHg and 548 mmHg respectively.