The answer would be letter choice B
The value of the angle of the incline

at which the block starts to slide is the angle at which the component of the weight parallel to the incline becomes equal to the frictional force that keeps the block on the incline:

where the term on the left is the component of the weight parallel to the incline, and the term on the right is the frictional force, which is the product between the coefficient of friction

and the normal reaction of the incline N.
The normal reaction of the incline, N, is equal to the component of the weight perpendicular to the incline:

Therefore, the initial equation becomes

From which we find


For angles above this value, the block will start sliding down, otherwise the block will stay on the incline.
Answer:
The work could be either positive or negative, depending on the direction the object moves
Explanation:
Answer:
x = 0.081 m.
Explanation:
a) To find how much does the atmospheric pressure cause the spring to compress we need to use the following equation:
(1)
<u>Where</u>:
F: is the force
k: is the spring constant = 3300 N/m
x: is the distance of compression =?
The force can be found as follows:
<u>Where</u>:
P: is the atmospheric pressure = 101325 Pa
A: is the area of the piston = πr²
r: is the radius = 0.029 m
Now, from equation (1) we can find x:
Therefore, the atmospheric pressure causes the spring to compress 0.081 m.
I hope it helps you!